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ABSTRACT

The biogeographic history of a species is a result of both stochastic
processes such as dispersal and habitat filters that determine where a
population with a given set of biological requirements can become es-
tablished. In this dissertation, I examine the geographical and ecolog-
ical distribution of the sedge tribe Schoeneae in conjunction with its
inferred speciation history in order to determine the pattern of disper-
sal and the environmental factors that have influenced establishment.
The biogeographic reconstruction indicates numerous transoceanic
dispersal events consistent with random diffusion from an Australian
point of origin, but with a bias towards habitats with vegetation type
and moisture regime similar to the ancestral conditions of the given
subgroup (open and dry habitats in the majority of cases). The global
distribution of the tribe also suggests a preference for low-nutrient
soils, which I investigate at the local (microhabitat) scale by contrast-
ing the distributions of the tribes Schoeneae and Cypereae on the
Cape Peninsula along soil fertility axes. The relationships between
the phenotypic traits of species and their soil nutrient levels are also
examined to determine whether the coexistence of the two groups in
the Cape can be attributed to differences in nutrient accumulation be-
haviour or strategy of biomass allocation to roots or structural organs
vs. leaves. No robust patterns were observed to identify such adapta-
tions or to distinguish the tribes ecologically, a result that is at least
partly due to low statistical power in the data set collected, which
constrains the analysis to the use of simple models less able to detect
subtle patterns in the ecological history of these sedges.
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INTRODUCTION

Why do plant species occur where they do? Research into this ques-
tion was reinvigorated by Darwin’s (1859) theory of natural selec-
tion and the botanical exploration of the European colonies in the
Southern Hemisphere (e. g., Hooker, 1853), which had revealed a set
of floras with similarities across continents but distinct from those
familiar to scientists from the Northern Hemisphere. The advent of
modern numerical methods in biology led to two major approaches in
biogeography: historical and ecological (Wiens and Donoghue, 2004).
The former mapped distribution ranges onto phylogenies to infer dis-
persal history in taxonomic groups, while the latter examined the
contemporary ecological conditions in which different plant groups
are found to infer biological limitations or adaptations determining
their potential ranges. The subsequent integration of ecology and sys-
tematics using comparative methods (Felsenstein, 1985, Webb et al.,
2002; Blomberg et al., 2003; Wiens and Graham, 2005) has allowed
the two approaches to be reconciled, e.g., in Wiens and Donoghue’s
(2004) model for the latitudinal diversity gradient.

Phylogenetic niche conservatism has been observed in a number of
taxa (e. g., Kozak and Wiens, 2006): conservative taxa are more likely
to respond to environmental change by changing their home range
to track their ancestral habitat than to adapt in-situ to the new con-
ditions. This model has been proposed by Wiens (2004) to lead to
speciation since once-continuous populations may become isolated
during this process, eventually diverging into separate species. Adap-
tation, too, can promote speciation in the case of key innovations:
novel features arising in a population that allow more specialized
life styles, i. e., resource partitioning into a greater number of distinct
niches, leading to an increase in diversification rate in the descendant
taxa (Ree, 2005). However, niche conservatism also affects commu-
nity assembly as it entails greater competition between closely re-
lated species, due to inherited phenotypic similarities, resulting in
phylogenetic overdispersion, that is, communities consisting of more
distantly related species than expected under random sampling from
the regional pool (Slingsby and Verboom, 2006).

Separately, in the context of greater appreciation for the role of
stochastic processes in biology (e.g., the neutral theory of genetic
evolution, genetic drift), Hubbell (2001) proposed the neutral theory
of ecology, which posits that the distribution of species in a region
and the assembly of communities are primarily the result of random
dispersal and are, therefore, a function of the regional species pool,
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rather than being determined by biological factors such as adaptation
and competition. Stochastic dispersal models have gained importance
since the recent recognition of the prevalence of intercontinental dis-
persal in plants (de Queiroz, 2005). When the theory of plate tectonics
came to be widely accepted, biogeographers started to emphasize the
biotic connections between land masses that had once been contigu-
ous and treated transoceanic dispersal with skepticism (Raven and
Axelrod, 1974; Levyns, 1964). For example, the affinities of the flo-
ras of South America, Southern Africa, Australia, and New Zealand
were explained as a shared heritage dating back to the time of the
Gondwana supercontinent, of which these land masses had formed
part (Levyns, 1964). Phylogenetic methods based on DNA sequences
and their potential for dating nodes of trees using a molecular clock
have made it clear that many of the shared plant taxa post-date the
separation of the continents, and transoceanic dispersal has been put
forward as an explanation increasingly frequently (Bergh and Lin-
der, 2009; Mufioz et al., 2004, Winkworth et al., 2002). (It should be
noted that the Panbiogeography school rejects this mechanism and
has raised criticisms of the use and interpretations of fossil evidence
for calibrating the rates of molecular evolution, e. g., Heads, 2011.)

In this dissertation, I examine the habitats of members of the Schoe-
neae clade of the sedge family, Cyperaceae, using dispersal models
to infer colonization events, as well as comparative methods to test
for ecological constraints on establishment in the clade (Chapter 2).
Cyperaceae is a cosmopolitan family of ca. 5500 herbaceous monocot
species (Goetghebeur, 1998; Govaerts et al., 2011) that arose ca. 8o mil-
lion years ago (Ma) in dry, open habitats (Bouchenak-Khelladi et al.,
2014). The overwhelming majority of the sedge species are in subfam-
ily Cyperoideae, which is further divided into tribes, of which the
three major ones are the northern-temperate Cariceae, the southern-
temperate Schoeneae, and the Cypereae, which are mainly tropical
but also have centres of diversity in Southern Africa and Australasia
(Goetghebeur, 1998; Govaerts et al., 2011; Figure 1.1). The sedges oc-
cupy a wide range of habitats and, given the relatively young age of
the family, their wide geographic range is considered to be due to
their highly anemophilous seeds (Raven and Axelrod, 1974).

The first phylogeny to include all the major clades of tribe Schoe-
neae (Verboom, 2006) indicated a minimum of five dispersal events
required to account for the contemporary distributions of the member
taxa. The age of the family suggests that these dispersal events must
have taken place significantly after the break-up of Gondwana. I have
increased the species sampling and collected data from independent
DNA marker regions to confirm Verboom’s (2006) results, and used
the phylogeny to compare different dispersal models and reconstruct
changes in habitat associated with dispersal and speciation to estab-
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Figure 1.1: Global species richness, based on GBIF specimens in the Cyper-
aceae tribes Schoeneae and Cypereae

lish the relative strength of stochastic processes and deterministic eco-
logical filters in the biogeographic history of the tribe.

Slingsby and Verboom (2006) examined the structure of schoenoid
sedge communities in Southern Africa and found evidence for phylo-
genetic overdispersion. Since the theory of overdispersion attributes
exclusion to competition for the same resource pool, this suggests
that the ecological niche does affect whether a population can be es-
tablished in a given community or habitat, and that niches are at least
somewhat conserved in this group. Stock and Verboom’s (2012) sur-
vey of nutrient concentrations in leaves of plant species from Mediter-
ranean and other biomes indicated that the leaves of the schoenoid
species in their sample had low N and P content and high N:P relative
to their Cypereae samples and to other angiosperms. In Chapter 3 of
this study, I collect ecological data for a wide range of sedge species
from the Cape Peninsula to test whether nutrient limitation is charac-
teristic of the Schoeneae niche, in contrast to that of Cypereae.






RADIATION AND REPEATED TRANSOCEANIC
DISPERSAL OF SCHOENEAE THROUGH THE
SOUTHERN HEMISPHERE

2.1 INTRODUCTION

Biologists since the time of Hooker have been intrigued by the phyto-
geographic affinities of Australia, southern Africa, and South Amer-
ica (Hooker, 1853; Levyns, 1964; Crisci et al., 1991; Crisp et al., 1999;
Galley and Linder, 2006; Moreira-Mufioz, 2007). Vicariance associated
with the break-up of Gondwana by ca. 120 Ma (Ali and Krause, 2011)
was previously considered to be the leading cause of this pattern
(Levyns, 1964; Raven and Axelrod, 1974), but more recent evidence
from fossils and molecular dating (Sanmartin and Ronquist, 2004; Lin-
der et al., 2003; Cook and Crisp, 2005; Pirie et al., 2008; Sauquet et al.,
2009) has made it clear that many plant lineages showing this disjunct
distribution originated after the break-up, implicating long-distance
dispersal (Raven and Axelrod, 1974; de Queiroz, 2005; but see Heads,
2011). The schoenoid sedges (Cyperaceae: Schoeneae) are one such
group: the sedge family as a whole has a crown age of ca. 75Ma
(Janssen and Bremer, 2004; Besnard et al., 2009), and tribe Schoeneae
(over 450 species) is distributed throughout the southern continents,
with particularly high endemism in Australia and South Africa (data
from Govaerts et al., 2011). Verboom (2006) concluded that at least
five transoceanic dispersal events must have taken place in Schoeneae
over the last 40 Ma. The precise number and direction of these disper-
sal events remains unclear, however, due to incongruence between
published phylogenies, incomplete resolution, and the lack of rigor-
ous biogeographic analysis. We address these issues by presenting
robust phylogenetic and biogeographic reconstructions for the tribe.
Morphological classification has been problematic in many clades
of Cyperaceae owing to the severe reduction of floral parts and the
rampant convergence of traits in the family, emphasizing the utility
of molecular phylogenies in sedge systematics (Muasya et al., 1998,
2009b). The cpDNA phylogenies of Verboom (2006) and Muasya et al.
(2009a) and the cpDNA + ITS tree of Jung and Choi (2013) demon-
strate that Schoeneae, as defined by both Bruhl (1995) and Goetghe-
beur (1998), is not monophyletic, on account of their inclusion of Cla-
dium, Carpha, and Trianoptiles. Schoeneae sensu Goetghebeur (1998)
contains five further genera shown by Muasya et al. (2009a) to fall out-
side the core Schoeneae clade. These are Arthrostylis, Actinoschoenus,
Trachystylis, Pleurostachys, and the large genus Rhynchospora, which,
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on the basis of cpDNA data, belongs in a separate clade containing
Cypereae and Cariceae. Hinchliff and Roalson’s (2013) tree of Cyper-
aceae agrees with the exclusion of these five genera from Schoeneae,
but supports the inclusion of Cladium, Carpha, and Cryptangieae in
Schoeneae. Support for the monophyly of Schoeneae s. s. is also equiv-
ocal. The maximum-parsimony tree of Muasya et al. (2009a), based on
rbcL and trnlL-F data, found no support for Schoeneae as a clade, or
even for their stricter “Schoeneae 1” group, which includes Carpha +
Trianoptiles and Scleria. In contrast, Verboom’s (2006) Bayesian tree,
based on rbcL, rps16, and trnL-F, weakly supports the monophyly of
Schoeneae excluding Carpha + Trianoptiles and Scleria (PP = 0.96), a
circumscription of Schoeneae not recovered by Muasya et al. (2009a).
This clade was recovered by Jung and Choi (2013) and Hinchliff and
Roalson (2013), with PP = 1.00 in the former but with very weak sup-
port in the latter (BP = 0.58). These conflicting interpretations of the
tribal limits of Schoeneae based on cpDNA data indicate the need for
data from independently assorting loci.

A striking feature of existing phylogenies is the high support at
deep and shallow nodes combined with a complete lack of support
for any resolution between the six main subclades of Schoeneae (de-
tailed in Table 2.2, which are themselves well supported (PP = 1.00
in Verboom, 2006; BP > (.75 in Muasya et al., 2009a; BP > 0.97 in
Hinchliff and Roalson, 2013). This polytomy at the base of the Schoe-
neae may be “soft”, reflecting insufficient information to recover the
true relationships between the lineages, or “hard”, reflecting near-
instantaneous divergence of these six clades (Lewis et al., 2005). Lewis
et al. (2005) developed a reversible-jump MCMC procedure that en-
ables sampling of trees with one or more polytomies during Bayesian
phylogeny reconstruction. Although the motivation for this method
was to prevent the inflation of support for nodes above very short
branches (the “star tree paradox”), it also allows the posterior prob-
ability of a hard polytomy at a particular node to be calculated as
the proportion of sampled trees with a polytomy at the position of
interest (Nagy et al., 2012).

If the different clades of Schoeneae were found to have distinct
geographic distributions, the rapid divergence between them might
be interpreted as the result of simultaneous dispersal to different re-
gions of the globe, followed by peripatric differentiation and local
speciation (Darwin, 1859; Jordan, 1905). An alternative scenario is that
the clades diverged into different ecological niches, either within the
ancestral area or associated with long-distance dispersal among the
southern continents (sympatry: Darwin, 1859; Bush, 1969; Givnish
et al., 2009; parapatry: Jain and Bradshaw, 1966; Cracraft, 1982).

The fact that Schoeneae are widespread south of the equator (Go-
vaerts et al., 2011) suggests that their distribution is not limited by
dispersal ability. On the other hand, they are almost entirely confined
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to the Southern Hemisphere and are most prevalent on oligotrophic
soils in temperate rather than tropical zones, leading us to postulate
a significant role for habitat filtering (i.e., ecological constraints on
where populations can be established; Endler, 1982; Cavender-Bares
et al., 2006) in their biogeographic history.

The specific aims of the present study are as follows:

* to re-evaluate the monophyly of Schoeneae, particularly with
regard to the placement of the Carpha and Scleria clades, by
adding nuclear sequence data to existing chloroplast data sets
and by increasing taxon sampling;

* to resolve the relationships of the principal schoenoid lineages
or else to evaluate whether their polytomous relationship is
“hard”, reflecting rapid divergence;

* to estimate (taking phylogenetic uncertainty into account) the
times of divergence of the principal lineages and the timing and
directionality of transoceanic dispersal events in Schoeneae;

* to test whether differentiation of the principal schoenoid lin-
eages coincided with intercontinental dispersal and/or special-
ization to different habitats (i. e., whether the radiation was adap-
tive); and

* to explore the roles of geography vs. habitat conservatism on
dispersal in Schoeneae.

2.2 MATERIALS AND METHODS
2.2.1  Species and marker sampling

Species were selected in such a way as to ensure that the concatenated
sequence matrix was as complete as possible and that genera (or
monophyletic portions of genera) were represented proportionally to
their size while capturing their biogeographic distribution (Table 2.2).
We sampled at least one taxon from each major non-schoenoid lin-
eage of Cyperaceae as outgroups. This included two representatives
of Hypolytreae, so that their most recent common ancestor could be
used as a calibration point (see BEAST analysis below). For Schoe-
neae, we made use of previously published sequence data (Zhang
et al., 2004; Chacon et al., 2006; Slingsby and Verboom, 2006; Verboom,
2006; Muasya et al., 2009a), supplementing these with new sequences,
principally from the external and internal transcribed spacers (ETS
and ITS) of the nuclear ribosomal gene region (nrDNA), but also fill-
ing some cpDNA gaps (Table 2.3). ETS and ITS have been used to
resolve relationships in Cariceae and Cypereae, and in regional stud-
ies (Waterway and Starr, 2007; Larridon et al., 2013; Jung and Choi,
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2013), the latter being shown to have higher information content than
most cpDNA markers in the sedges (Hinchliff and Roalson, 2013).

2.2.2  DNA extraction, PCR amplification, and sequencing

Silica-dried leaf and culm material was pulverized for ca. 20 min at
30Hz in an MMjoo0 oscillating mill (Retsch GmbH, Haan, Germany).
DNA was extracted using the CTAB method (Doyle and Dickson,
1987; Gawel and Jarret, 1991). The chloroplast regions were amplified
with the primer combinations used by Verboom (2006). The ETS re-
gion was amplified with primers ETS-1F and 185-R (Starr et al., 2003)
and ITS with primers ITS-4 and ITS-A (at UNE) or ITS-L (at UCT)
(White et al., 1990; Hsiao et al., 1994; Blattner, 1999). PCR reagents
were mixed to the following concentrations: Tag buffer with dye 1x,
MgCL, 2mM in total, each dNTP 0.2mM, each primer 0.3 mM, Tag
polymerase 1 U (KAPA Biosystems, Ltd., Cape Town, RSA). To pro-
mote amplification of the nuclear markers, dimethyl sulphoxide and
bovine serum albumen were added to 2% (v/v) and 0.04 % (w/V)
respectively. PCR reactions were done in AB2720 thermal cyclers (Ap-
plied Biosystems, Inc., Foster City, California, USA) using the follow-
ing programme: initial denaturation at 94 °C for 2min; 32 cycles of
denaturation at 94 °C for 305, annealing at 52 °C for 305, extension at
72 °C for gos; and a final extension step at 72 °C for 7 min. PCR prod-
ucts were cleaned and sequenced on ABI3730XL cycle sequencers at
the University of Stellenbosch DNA Sequencing Unit (Stellenbosch,
RSA).

2.2.3 Matrix assembly

Contigs of forward and reverse sequences were assembled with Seq-
Man v. 7.0.0 (DNASTAR, Inc., Madison, Wisconsin, USA). (New se-
quences are deposited on GenBank with accession numbers KF553442—
KF553627.) These were aligned with previously published sequences

downloaded from GenBank (Table 2.3) using Muscle v. 3.8.31 (Edgar,

2004), and the resulting alignments edited by hand in BioEdit v. 7.0.9

(Hall, 1999). Ambiguously aligned regions, noted in all matrices ex-
cept rbcL, were excluded from downstream analyses.

2.2.4 Model testing

The best-fitting model of sequence evolution for each gene region
was selected on the basis of BIC values (Luo et al., 2010) calculated
by MrAIC v. 1.4.4 (Nylander, 2004), which uses PhyML v. 3.0 (Guin-
don and Gascuel, 2003) to optimize parameters on the maximum-
likelihood (ML) tree for each model. The selected models were as fol-
lows: GTR+TI for ETS, ITS, and rps16; HKY+I for rbcL and trnL. The
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proportions of variable sites were 574/713 (81%) for ETS, 457/844
(54%) for ITS, 386 /1430 (27%) for rbcL, 538 /1204 (45%) for rps16, and
622 /1285 (48%) for trnL.

2.2.5 Phylogeny reconstruction

The phylogeny was reconstructed using Bayesian MCMC algorithms,
both sampling and not sampling polytomous trees. We first inferred
the gene trees for each of the five regions separately to identify po-
tential incongruence. As there were no instances of conflict at well
supported nodes (Figure 2.8), the matrices of the five regions were
concatenated and partitioned by gene for the downstream analyses.
The phylogeny was reconstructed in MrBayes v. 3.2.1 (Ronquist et al.,
2012), averaging over all submodels of the GTR relative substitution
rate model (using nst=mixed) and modelling rate heterogeneity with
a gamma distribution with four rate categories. All parameters ex-
cept topology and branch lengths were unlinked across partitions.
The MCMC sampler was run four times simultaneously for 4 x 107
generations with four Metropolis-coupled chains at a temperature
setting of 0.2, sampling 10* parameter estimates in each run. Tracer
v. 1.5 (Rambaut and Drummond, 2009) was used to calculate the ef-
fective sample size of each parameter. These were all above 2000, in-
dicating that the MCMC algorithm had been run long enough, and
all four runs had converged on the same parameter estimates. The
average standard deviation of split frequencies reached 0.01 after
1.1 x 107 generations, indicating topological convergence. The first
50% of samples were discarded as burn-in and a consensus tree was
created from the post-burn-in samples in MrBayes, with posterior
probabilities (PP) of nodes indicating clade support. (The sequence
alignments and trees produced are deposited in TreeBase at http:
//purl.org/phylo/treebase/phylows/study/TB2:514725.)

As reversible-jump MCMC sampling of trees containing polytomies
is not implemented in MrBayes, the phylogeny reconstruction was
repeated in Phycas v. 1.2.0 (Lewis et al., 2005), using the same parti-
tions and the models selected with MrAIC, with the polytomy prior
in effect and the prior on the resolution classes set to 1 (i.e., all trees
equally probable a priori). This ensured that there was no sampling
bias in favour of resolved trees due to the greater number of possi-
ble dichotomous than multichotomous trees for a given number of
terminals. The analysis was run twice for 2 x 10° cycles with a sin-
gle chain, saving 2 x 10°> samples in each run. The parameter sum-
maries and plot of split probabilities indicated that the MCMC chain
had converged and the first 5 x 10* cycles were discarded as burn-
in. The post-burn-in trees were summarized, annotated, and plot-
ted using NCLconverter distributed with the Nexus Class Libraries
(Lewis and Holder, 2008), the Newick Utilities (Junier and Zdobnov,
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2010), and the packages ape v. 3.0-8 (Paradis et al., 2004) and phyloch
v. 1.5-3 (Heibl, 2008) for R v. 3.0.1 (R Core Team, 2013). The Bayesian
node support values were supplemented with nonparametric boot-
strap proportions (BP) calculated from 1000 bootstrap samples us-
ing RAXML v. 7.4.4 through the CIPRES Science Gateway (Stamatakis
et al.,, 2008; Miller et al., 2010), applying a GTR+I';5 model to each
partition.

To establish the effect of incomplete or inconsistent sampling in
the sequence matrix, we also ran the MrBayes and Phycas analyses
on the subset of taxa for which both nuclear and at least two chloro-
plast gene regions had been sampled. This subset comprised 18 taxa
representing all clades. The models with the best BIC scores for this
subset were GTR+I" for ETS, ITS, rbcL, and rps16; HKY+I for trnL.
MCMC settings were as above except that the analysis converged
rapidly enough that it was run for only 5 x 10 cycles in Phycas, dis-
carding the first 2.5 x 10* as burn-in.

2.2.6  Molecular dating

To estimate divergence dates in Schoeneae, node ages were coesti-
mated with the phylogeny and other model parameters using an un-
correlated relaxed-clock model in BEAST v. 1.7.5 (Drummond and
Rambaut, 2007). The data set was partitioned as above and analysed
with the same substitution models, using the MrBayes consensus tree
as the starting tree.

Mapanioideae and Cyperoideae were constrained to be reciprocally
monophyletic and the split between them (i. e., the crown age of Cy-
peraceae) was calibrated as a prior with a uniform distribution be-
tween 67 and 83 Ma, corresponding to the error range of Besnard et
al.’s (2009) estimate for this node from a tree of the commelinoids
(mainly Poaceae and Cyperaceae) that incorporated six fossil calibra-
tions. The mid-Eocene fossil of Volkeria messelensis S.Y.Smith et al. de-
scribed by Smith et al. (2009) was used to set a lognormal prior of
u = 6 Ma offset by 36.5Ma, with Inc = 1Ma, on the crown age of the
Hypolytreae (represented by Hypolytrum nemorum (Vahl) Spreng. and
Mapania cuspidata (Miq.) Uittien in our data set), yielding a 95% prior
HPD interval of 60-37Ma (lower- to mid-Eocene; Gradstein et al.,
2004).

Gamma-distributed priors with shape = 1 and scale = 1 were set
on the means of the uncorrelated log-normal relaxed clocks of each
partition, as well as on the birth and death rates of the birth-death
diversification model (Drummond et al., 2006; Gernhard, 2008). All
other priors were kept at their default settings.

Analyses were run four times for 108 generations, saving 10* sam-
ples in each run. Convergence was assessed with Tracer v. 1.5 and the
first 5 x 107 generations were discarded as burn-in. The maximum-
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clade-credibility tree was annotated with medians and 95% HPD in-
tervals of node ages using TreeAnnotator v. 1.7.5.

2.2.7 Ancestral area reconstruction

Ancestral areas were reconstructed using dispersal-extinction—clado-
genesis (DEC) models in Lagrange (Ree et al., 2005; Ree and Smith,
2008), which makes use of branch length information to infer the
maximum-likelihood (ML) combination of areas at each node of the
tree. The species in the tree were scored as present or absent in each
botanical region (Level 2 of Brummitt, 2001) as indicated in the World
Checklist of Monocotyledons (Govaerts et al., 2011). To facilitate anal-
yses, the number of states was reduced as follows: the various Pa-
cific regions (including New Caledonia but excluding New Zealand)
were combined into a single area, as were Central and South Amer-
ica, and Malesia and Southeast Asia. The seven retained states were
thus Southern Africa, Madagascar, Southeast Asia, Australia, New
Zealand, Pacific Islands, and South America. The Eurasian and North
American regions were excluded from the analysis since Schoenus ni-
gricans L. is the only species in our data set to occur there. Its docu-
mented occurrence in South America is based on a single record from
Uruguay, regarded by Osten (1931) as “sin duda introducida accidental-
mente”, so this taxon was scored as absent from this region.

Lagrange C++ v. 0.20-28 (downloaded from http://www.github.
com/blackrim/lagrange) was used to optimize tree-wide dispersal
and extinction parameters of the biogeographic model and to infer
ancestral areas. All combinations of areas were allowed as ancestral
states and the dispersal rates were set to equal on the basis of the
model test results (see below). To account for phylogenetic uncer-
tainty (Lutzoni et al., 2001), especially at the base of Schoeneae, the
Lagrange analysis was run over 1000 trees randomly selected from
the posterior distribution sampled with BEAST. The Lagrange output
was parsed and the mean proportional likelihoods of ancestral states
calculated in R, making use of the packages ape and phyloch. (The R
code is available at https://github.com/javiljoen/phylojjeny.)

To test whether dispersal rates in Schoeneae were determined by
geographic distance, the likelihoods of the following models were
compared on the maximum-clade-credibility dated tree: (A) all rates
equal, (B) all rates different (estimated), (C) rates inversely propor-
tional to minimum distance between regions, and (D) rates inversely
proportional to squared distance (i. e., dispersal is limited by propag-
ule density, assuming homogeneous radial diffusion from the source
area). The pairwise minimum Great-Circle distances in the latter two
models were calculated with the R packages sp v. 1.0-9 (Pebesma and
Bivand, 2005) and rgdal v. 0.8-9 (Bivand et al., 2013), using shapefiles
from http://www.kew.org/gis/tdwg (R code at https://github.com/
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javiljoen/phylojjeny). Model weights were calculated from the dif-
ferences between Akaike Information Criterion values (AIC; Akaike,

1973) as
e—O.S X Ai

T Y e 05xA;”

where A; = AIC; — AIC i, (Table 2.1).

Wi

2.2.8 Ancestral habitat reconstruction

The distributions of lineages may be constrained more by ecologi-
cal opportunity than dispersal ability (Crisp et al., 2009) and shifts
to distinct habitats may be associated with cladogenesis. We there-
fore felt justified in treating habitat types as “areas” under a biogeo-
graphic DEC model. Lagrange has the additional advantage that it
allows the inference of polymorphic ancestral states. Habitat descrip-
tions for each species were extracted from the available literature and
supplemented with our own observations (Table 2.4). Habitats were
coded as perennially wet or seasonally dry (or both) and closed or
open (or both). Therophytes in seasonally wet habitats were classi-
fied as wet-adapted species, while hemicryptophytes in such habitats
were considered dry-adapted because they must survive a dry sea-
son, during which nutrient uptake and carbon fixation are limited.
Habitats described as forest or woodland were considered closed,
whereas grasslands, streamsides, bogs, alpine vegetation, heathland,
and scrub were coded as open. Australian usage of the term “swamp”
(Sainty and Jacobs, 2003) is more or less equivalent to African “marsh”,
and both were coded as open unless specifically described as closed.
The phylogenetic signal in the two variables was assessed to deter-
mine whether ancestral states could sensibly be reconstructed. The
maximume-likelihood estimate of the tree transformation parameter A
was calculated using fitDiscrete in the R package geiger v. 1.3-1
(Harmon et al., 2008) (modified to allow A values > 1), where A = 1
corresponds to Brownian motion and A = 0 indicates that trait evo-
lution is random with respect to phylogeny (i. e. no phylogenetic sig-
nal) (Pagel, 1999). Vegetation type and habitat moisture at ancestral
nodes were reconstructed as described above for ancestral areas, ex-
cept that an asymmetric (all-rates-different) dispersal rate matrix was
optimized separately on each of the 1000 trees.

2.3 RESULTS
2.3.1  Circumscription and monophyly of Schoeneae
The phylogenetic tree reconstructed with MrBayes, Phycas, and RAx-

ML is shown in Figure 2.1. All three analyses excluded Cladium, Scle-
ria, Rhynchospora, and Arthrostylis from Schoeneae with PP / BP =
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1.00. Cladium was resolved as sister to all the other Cyperoideae, the
next most basal split being the divergence of the Scleria + Bisboeckel-
ereae clade from the remainder of the Cyperoideae. Rhynchospora and
Arthrostylis resolved closer to Cariceae and Cypereae than to Schoe-

neae.
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Figure 2.1: Bayesian tree of Schoeneae based on ETS, ITS, rbcL, rps16, and
trnL.
The tree is plotted with the branch lengths estimated in MrBayes.
The scale bar is in substitutions per site. Shaded points on each
branch represent, from left to right, PP values from MrBayes,
PP values from Phycas, and BP values from RAXML. Clades in
Schoeneae are labelled with the informal names used in the text.

Schoeneae s.s. (henceforth, Schoeneae) had support of PP = 1.00 /
1.00 (MrBayes / Phycas) and BP = 1.00 (RAxML). Trianoptiles formed
a clade with Carpha that was sister to Schoeneae, but the Schoeneae +
Carpha clade was not supported by any of the three analyses (PP <
0.90, BP = 0.65). In the analyses of the more fully sampled taxa (Fig-
ure 2.2), Schoeneae was once again supported by all three methods
(PP =0.99 / 0.99, BP = 0.83), as was the monophyly of Schoeneae +
Carpha clade + Lagenocarpus (PP = 1.00 / 1.00, BP = 1.00). The re-
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lationships between Schoeneae, Carpha clade, and Lagenocarpus were
not resolved using either data set.

Rhynchospora rugosa subsp. brownii
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000 Carex magellanica

[ Trianoptiles capensis
i Carpha glomerata I Carpha
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e 095 0.75 Tetraria capillaris
e 099 090 0.02 Neesenbeckia punctoria

Figure 2.2: Bayesian tree for the subset of taxa that were sampled for both
nuclear and at least two cpDNA markers.
Other details as in Figure 2.1.

The MrBayes and Phycas trees were largely congruent, although
the Phycas analysis returned lower support values at all supergeneric
nodes except that subtending Caustis + Lepidosperma + Tricostularia
clades (PP = 0.80 / 0.95), a node not recovered in the ML anal-
ysis (BP < 0.50), nor in the Phycas analysis of the well-sampled
taxa. The nodes that collapsed in the Phycas analysis were generally
poorly supported in MrBayes and were subtended by short branches
(< 0.01 substitutions per site).

2.3.2 Relationships within Schoeneae

The six main subclades were all well supported (PP / BP = 1.00), as
were clades within them that roughly correspond to named genera (or
monophyletic portions of genera). Relationships between these main
clades, however, were weakly supported and inconsistent across anal-
yses, including in the analyses run on the subset of taxa that had
been fully sampled (Figure 2.2). This lack of resolution was also ap-
parent in the individual gene trees (Figure 2.8), indicating that it is
the result of low phylogenetic signal, rather than gene tree conflict.
The sole exception is the Bayesian support for Gahnia + Lepidosperma
clade in the trnl data (PP = 0.99, but BP = 0.66), which was not re-
covered (but also not contradicted) by the other data sets. Of the trees
sampled by Phycas, 73% had a polytomy at the base of Schoeneae
(82% in the more densely sampled subset). None was completely un-
resolved (a hexachotomy), but the only supported node was Caustis +
Lepidosperma + Tricostularia (PP = 0.95), which was unsupported in
the other analyses, as mentioned above.

Our results confirm the polyphyly of the genera Schoenus, Tetraria,
and Costularia. Schoenus consists of at least two clades, one containing
most of the species of Schoenus, as well as Tetraria s.s. (Schoenus clade),
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and the other in Tricostularia clade with reticulate-sheathed Tetraria.
The Australian T. octandra (Nees) Kiik. and T. capillaris (FMuell.) .M.
Black were not resolved near either of the African clades of Tetraria,
but near Morelotia (Tricostularia clade) and Neesenbeckia (Lepidosperma
clade), respectively. Costularia arundinacea (Sol. ex Vahl) Kiik., classi-
fied as a member of subgenus Lophoschoenus was placed in the Tricos-
tularia clade, rather than with its congeners (all members of subgenus
Costularia). And the species of Costularia and Oreobolus in the Oreobo-
lus clade were not consistently recovered as clades corresponding to
genera.

2.3.3 Molecular dating

The well supported nodes in the MrBayes and Phycas analyses were
also recovered by BEAST (Figure 2.3). Along the backbone of Schoe-
neae, the BEAST analysis additionally supported the monophyly of
Caustis + Lepidosperma + Tricostularia (PP = 1.00).

Schoeneae had split from the Carpha clade by the Paleeocene 95%
HPD [71.4-53.6] Ma) and the six main subclades diverged in the space
of ca. 5.5Ma in the late-Paleeocene—Eocene (between [60.1-43.6] Ma
and [56.1-38.7] Ma). Within the Tetraria s.s. and the Oreobolus clades,
the bulk of extant species diversity is recent (< 10 Ma), while in the
other clades it is older.

2.3.4 Ancestral areas and habitats

Schoeneae was unambiguously reconstructed as originating in Aus-
tralia (Figure 2.4). Furthermore, the initial split into the six subclades
was found to have taken place within that continent, with each sub-
clade still containing Australian representatives today.

Dispersal of five of the six lineages to the other austral continents
commenced in the Oligocene. During the Oligocene-Miocene, the Pa-
cific islands were colonized four times from Australia (Figure 2.4).
Dispersal to southeast Asia (including Malesia) and New Zealand
started in the Miocene, and Madagascar was colonized by two lin-
eages in the late Miocene. The African mainland was reached by three
different Australian and Pacific lineages during the Oligocene and
Miocene, by Capeobolus—Cyathocoma from an uncertain origin, and by
Malagasy Costularia in the Pliocene. While most changes in distribu-
tion were reconstructed as range expansion events, eleven vicariance
events were also inferred, e.g. between Tetraria capillaris and Neesen-
beckia punctoria (Vahl) Levyns.

The model in which each dispersal rate was estimated separately
(B) had a higher likelihood (InL = —120.3; Table 2.1) than that as-
suming a single dispersal rate between all areas (InL = —147.0),
though this did not represent a significantly better fit (model weight

25



26

AUSTRAL BIOGEOGRAPHY OF SCHOENEAE

Table 2.1: Comparison of dispersal models, showing that incorporating ge-
ographic distance did not result in better model fit and that the
large number of parameters in the most complex model (B) was
not justified by a sufficient increase in the likelihood.

Global Global No. of

Model dispersal extinction InL parame- AIC Model weight
rate rate ters

A. All rates equal 0.004 0.000 —147.0 2 298.0 1.00
B. All rates estimated 0.276 0.000 —120.3 44 3287 218x 1077
separately
C. Rates inversely proportional 450 000 1608 2 3257 955x1077
to minimum distance
D. Rates inversely proportional - ) 0.000 —2125 2 4291 339x10°%

to minimum distance squared

w = 2.18 x 1077) on account of the 42 extra free parameters and
the absence of some dispersal categories from the data (e.g. South
America to Madagascar). This comparison thus fails to provide sup-
port for differences in dispersal rate. Setting rates to the reciprocals
of the minimum distances or squared distances was also not justi-
fied (w = 9.54 x 1077 and w = 3.39 x 10~%, respectively), indicating
that the dispersal rates between pairs of areas was not related to the
distance between them.

Both habitat traits showed significant phylogenetic signal. The rates
of change from seasonal to perennially wet habitat and vice versa
were not significantly different (6 =2 x In(L1/Ly) = 0.92,df =1,P =
0.336), habitat moisture regime evolving according to a Brownian mo-
tion process (A = 1.01). Vegetation type, conversely, changed asym-
metrically, with transitions to open habitat occurring at a significantly
higher rate than to forest (6 = 9.92,df = 1, P = 0.002), and the esti-
mated phylogenetic signal in this character (A = 0.47) differed from
both the expectation under Brownian motion (P < 0.001) and that
without phylogenetic structure (P = 0.027).
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Figure 2.3: Dated tree of Schoeneae reconstructed in BEAST.
Branch thickness indicates node support. Nodes with PP < 0.5
have been collapsed. Grey bars indicate 95% HPD intervals of
node ages. Geological epochs follow Gradstein et al. (2004) and
are indicated with the standard abbreviations.
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Figure 2.4: Maximum-likelihood reconstruction of ancestral distributions in

Schoeneae.

Coloured boxes indicate the areas with a proportional likelihood
(averaged over 1000 BEAST trees and summed over all distribu-
tion ranges containing the area) of pL > 0.50 at each node, plot-
ted on the consensus tree (nodes with PP < 0.50 collapsed). Note
that three of the nodes had no areas with total pL > 0.50. Please
see the CSV file in the attached data folder for the pL values
of each combination of areas. Maps are based on Wilford and
Brown (1994). Geological epochs follow Gradstein et al. (2004)
and are indicated with the standard abbreviations. Aus, Aus-
tralia; Mad, Madagascar; Pac, Pacific Islands; NZ, New Zealand;
SAf, Southern Africa; SAm, South America; SEA, Southeast Asia.



29

2.3 RESULTS

[emsadue je dje)s Yoea jo pooyra reuontodoid sy} se umoys

ylog m
152104 m

‘9B3UIODG UI SjejIqel] [eI}Sadue JO SUOHINIISUOIDI POOYIDNI[-WNWIXe (5 9m3r]

eyepidsno euens|
si|IqelJeA eiaes]
9 elIeNIa]
ejoedwod elelisl
BSSE.) BLIRIS|
Snjoq elrel)a]
5e1b shuaoyosidgy
snsoj|1A snusoyosid3
Jedwo) eLiens]
BOIeAAS BLIRIISL
©)01d eLIRAI8L
SUSMU SNUAOYDS
snasiuuad snusoyds
sueanbiu snuaoyds
SuabLI SNUAOYDS
snyel|0Ja SNUaoyds
SNNNIdsaed SNUAoYdIS
SNPIIY SNUAOYDS
eJadse eluyes
siIsL) eluyes
sisUaiueq eluyes
1) eluyes)
B3JRUIAR B]9eUYI0UIeAD
eJpURIP BI3RYIOYIRAD
eUOBRI1Y) BUSE|BLIOSIIA
BISNap X1IY10|d
e1bfisopnasd euse|aLwosan
sijibe.y RS0
dJje200n3| BLIRNIS0D
SIsusjejeu eLIe|nIs0d
nuoteq epodojued eriejniso)
epodojued epodojued elie|niso)
exe| eLIR|NIS0D
SNYINSIP SNj0qosI0
eUIU3NY SNj0qoal0
snjeydaaohijo snjogoaio
snyeunoad snjogoalQ
sninbugsniqo snjogqoalo
rJpURXAY BWOI0YIRAD
s1|nealInalq snjogoaded
BSOAJSU BLIR|NISOD
BSONXa|} eliess]
'le|nIsh eliesl
SNNUI8d snudoydsidy
BJRION|0AUI BLIBIIAL
suenbueL elena]
SAUOBISOIOIW BLIRIIBL
eyeuibenclbiu errend]
eadeUlpunJe eLIenisod
l yeb enojalop
eIPUE)I0 BlLivs8L
rJofj1oned eLIRNISOdL |
snJojyipue.h snusoyds
SNIJ0JIAIND SNUBOYD:
wnson}io) ewaadsopids
awLI01[1) ewJadsopide]
aJeJale] ewadsopida
a[eulpnibuo| ewiadsopida]
e1i0)oUNd B10aqUasadN
sue|ided elrens]
eaounl eurseyoey
1101p1I1 eULISRYIRIN
SapI0JSIIEW BULIBRYIRIN

BI10Ip SHSNe)
eleIslie elpuens
esoajorlq erejjades eydien
euidje eydied
ejesawolb eydien
sisuadeo sejndouer L

2d4} uonyera3ap (g) -owdar arnysio (V)
"sapou

yiog @
AiQ Ajjeuosess m
19\ Ajeluualed O

v




30

AUSTRAL BIOGEOGRAPHY OF SCHOENEAE

Most of the deep nodes within Schoeneae were reconstructed as
occupying perennially moist or both perennial and seasonal habitats
(Figure 2.5A). The Tricostularia clade, Mesomelaena, and Cyathochaeta
have specialized to dry environments, while Machaerina and Oreobo-
lus associate predominantly with perennially wet environments. In
Gahnia, Costularia, Lepidosperma and the Schoenus clade, generalist an-
cestors have differentiated into wet- and dry-adapted lineages. The
dry-adapted lineages mostly occur in Australia and South Africa.

The ancestor of Schoeneae was inferred to have inhabited open veg-
etation. The main transitions into forest were in Gahnia and Costularia,
both in the last 10Ma, with Machaerina and Lepidosperma becoming
generalists > 20 Ma (Figure 2.5B). Adaptation to shade is associated
with dispersal to the Pacific, Southeast Asia, and Madagascar. The
shade-tolerant clades tend to be found in perennially moist environ-
ments, but not all wet-adapted lineages are found in shady habitats;
for example, Neesenbeckia, Oreobolus, and some Lepidosperma inhabit
open wetlands.

Figure 2.6: Inferred dispersal events in Schoeneae.
Arrow thickness is proportional to the number of events. The six
dispersal events in the Oreobolus clade for which the source area
was ambiguously reconstructed have been omitted. Maps were
drawn using the R packages maps v. 2.2-6 and mapproj v. 1.1-8.3.

Numerous habitat shifts were inferred in Schoeneae, involving both
generalization (“dispersal”) and specialization (“vicariance”). Habitat
shifts taking place within a geographical area did not show a direc-
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tional bias along either habitat axis (Figure 2.7). When geographical
dispersal was accompanied by a habitat shift, however, it was more
often into drier (3/3) and/or more open (3/4) habitats. Nevertheless,
most of the dispersal events (22/29) did not involve any habitat shift.

with dispersal

Q! Q
\ 0\
weD) TSor))

@] @)
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Figure 2.7: Number of habitat shifts along branches with and without dis-
persal events. Counts were binned into classes of width 3; ar-
row thickness is proportional to the class mean. Loops represent

branches where no shift occurred. D, seasonally dry; W, perenni-
ally wet; E, forest (closed-canopy) vegetation; O, open vegetation.

2.4 DISCUSSION

Morphological classification in Cyperaceae suffers from uncertainty
in character homology, especially pertaining to reproductive struc-
tures (e. g. Bruhl, 1991; Vrijdaghs et al., 2007; Reutemann et al., 2012).
While analyses of floral ontogeny are helping to cut this Gordian
knot (Vrijdaghs et al., 2009, 2010; Prychid and Bruhl, 2013), they are
most useful in secondary homology assessment, requiring an a priori
phylogenetic hypothesis based on independent data, such as those
provided by DNA sequences. Goetghebeur (1998) classified Cladium,
Rhynchospora, and Arthrostylis as members of Schoeneae on the ba-
sis of inflorescence morphology, but our results place the latter two
closer to core Cyperoideae (the clade containing Cypereae, Cariceae,
and Abildgaardieae) and Cladium as sister to all other Cyperoideae,
consistent with Bruhl (1995), Ghamkhar et al. (2007), and Jung and
Choi (2013). Hinchliff and Roalson (2013) placed Rhynchospora as sis-
ter to core Cyperoideae and Arthrostylis in Abildgaardieae. However,
they found strong support for Cladium as sister to Schoeneae + Crypt-
angieae + Carpha. This appears to be based on cpDNA and ITS data
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for about a dozen species in Cladium, Schoenus, Gahnia, and Oreobolus
and cpDNA data for other members of Schoeneae (detailed informa-
tion is not provided), so our conflicting results may be due to the
denser nrDNA sampling in this study, or our sparser sampling of
outgroup taxa. The conflict may also be the result of the difference
in computational method used, as Hinchliff and Roalson (2013) used
ML, while the more modestly sized data sets (Verboom, 2006; Jung
and Choi, 2013; and this study) were analysed by Bayesian inference,
which incorporates model uncertainty to a greater degree by produc-
ing a posterior distribution of trees associated with a distribution of
parameter values.

In agreement with Bruhl’s (1995) morphological analysis, Verboom’s
(2006) cpDNA Bayesian analysis, Jung and Choi’s (2013) cpDNA +
ITS Bayesian analysis, and Hinchliff and Roalson’s (2013) ML analysis,
but contra the cpDNA hypothesis of Muasya et al. (2009a), our anal-
yses confirm that the genera Becquerelia, Calyptrocarya, Diplacrum (Bis-
boeckelereae) and Scleria (Sclerieae) fall outside the Schoeneae clade.
The discordance between Muasya et al.’s (2009a) and Verboom’s (2006)
cpDNA trees may be due to the simplistic model of sequence evo-
lution implicit in the parsimony method employed by the former
(which causes, inter alia, long-branch attraction) and/or because they
used only two plastid regions, whereas Verboom (2006) used three.
The low bootstrap support at the deeper nodes of the Muasya et al.
(2009a) tree indicates insufficient variability in the rbcL and trnL-F re-
gions used by them, since conflict in the data would have manifested
in our results as well.

Schoeneae was strongly supported as monophyletic in all analy-
ses (PP = 0.99-1.00, BP = 0.83-1.00), with Trianoptiles and Carpha
forming a clade sister to Schoeneae. Verbelen (1970) and Goetghe-
beur (1986) described distinct embryo types for Schoenus and Carpha,
which supports the reclassification of the Carpha clade as a separate
tribe, Carpheae. Our results do not support the Lagenocarpus clade
(Cryptangieae) as separate from the Carpha clade + Schoeneae, so the
separation of Carpheae from Schoeneae also argues for the mainte-
nance of Cryptangieae, pending further work on this undersampled
group.

While Jung and Choi (2013) and Hinchliff and Roalson (2013) used
ITS data for members of three of the main subclades of Schoeneae,
the present study is the first to include sufficient sampling of nuclear
regions to provide independent evidence for testing relationships in
the tribe. The six main subclades identified by Verboom (2006) were
also supported by our ETS and ITS data, in both separate and com-
bined analyses. While robust on genetic grounds, these clades appear
to lack phenotypic apomorphies and none was recovered in Bruhl’s
(1995) comprehensive cladistic analysis of morphological characters
in the family. We, therefore, refrain from treating them formally and
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instead continue to use the provisional clade names in Figure 2.1.
Forthcoming work will deal with this and related taxonomic issues,
such as the polyphyly of Tetraria, Schoenus, and Costularia, noted by
Zhang et al. (2004) and Verboom (2006).

Relationships between these clades remain unresolved, despite the
increased marker and taxon sampling. The added nrDNA regions
were highly informative, contributing disproportionately to the vari-
ability in the data set. Nevertheless, no nodes along the Schoeneae
backbone were supported in the MrBayes analysis, despite this method
being biased in favour of resolved trees (Lewis et al., 2005). In addi-
tion, the majority of the trees sampled by the Phycas analysis were
polytomous or inconsistently resolved, indicating a near-instantaneous
divergence at the base of the clade, dated as taking place between
[38.7-56.1] and [43.6-60.1] Ma.

Schoeneae was reconstructed as originating in Australia, its initial
radiation taking place on that continent. Australia had already sepa-
rated from all neighbouring landmasses except Papuasia at this time
and had yet to approach the Sundaland and Philippine Sea Plates
(Wilford and Brown, 1994; Neall and Trewick, 2008), so the broad
austral distribution of Schoeneae and the divergence of its major lin-
eages cannot be explained as a product of the separation and isolation
of once-contiguous subpopulations due to tectonic shifts (i. e., vicari-
ance).

Within Australia, open habitats, inferred as ancestral, would ini-
tially have been sparsely distributed (Crisp et al., 2004), but there
are records of Cyperaceae in mid-Eocene seasonally dry forest in the
Lake Eyre basin in south-central Australia (Martin, 2006). Diversifi-
cation of Schoeneae may have been enabled by the increasing ap-
pearance of more open, sclerophyllous vegetation from this period
onwards, especially after the initiation of the Antarctic Circumpolar
Current ca. 38-28 Ma, which is thought to have caused drier and more
seasonal climates in Australia (Quilty, 1994; Crisp et al., 2004; Martin,
2006). However, as no shifts into closed vegetation were inferred for
the early Schoeneae, the initial divergence of the major lineages was
probably not the result of adaptation to distinct vegetation types.

Starting in the Palaeocene, Australia experienced diverse rainfall
regimes with a seasonally arid central zone, an arid northwest, and
humid rainforest on the rest of the continent (Quilty, 1994; Crisp et al.,
2004; Martin, 2006). The variation in the moisture niches of the prin-
cipal schoenoid lineages suggests that they may have radiated into
different moisture niches. Our reconstructions are ambiguous at the
deeper nodes, however, with the result that niche partitioning at the
time of the radiation lacks clear support.

Another possibility is that radiation was non-adaptive, with ini-
tial divergence being driven primarily by geographic isolation within
Australia, a real possibility if the ancestral habitat was patchily dis-
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tributed. Unfortunately, testing for intracontinental allopatry is prob-
lematic, as the reconstruction of paleeodistributions is precluded by
the sparseness of the fossil record for Cyperaceae and for the Aus-
tralian flora as a whole (Quilty, 1994). Moreover, current distributions
are unlikely to retain a signal of historical allopatry after 50 Ma (Losos
and Glor, 2003). To shed light on the initial radiation in Schoeneae,
more precise studies of microhabitat are needed. Investigation of sub-
strate characteristics is likely to prove especially fruitful, as several
instances of edaphic specialization are known (e.g. in Lepidosperma:
Barrett, 2013). In addition, study has begun on non-ecological mecha-
nisms of reproductive isolation such as polyploidization.

Dispersal of Schoeneae out of Australia commenced in the Oligo-
cene and has been ongoing, accounting for at least fourteen dispersal
events to the Pacific Islands, New Zealand, Southeast Asia, South-
ern Africa, and possibly South America (Figure 2.6). Southern New
Guinea is on the Australian tectonic plate, which had already come
into contact with the Pacific and Asian plates by the Miocene (San-
martin and Ronquist, 2004; Neall and Trewick, 2008), potentially al-
lowing Papuasia and Malesia to be colonized in relatively short steps
by “island-hopping”. Likewise, while New Caledonia is thought to
have been completely submerged following the separation of Zealan-
dia from Australia, its re-emergence had already started by the Oligo-
cene (Pelletier, 2007; Cluzel et al., 2012), with volcanic islands possi-
bly serving as stepping stones for various plant lineages (Wilford and
Brown, 1994; Ladiges and Cantrill, 2007), e. g. Monimiaceae (Renner
et al., 2010). Dispersal to New Caledonia and New Zealand, however,
has mostly taken place in the last 20 Ma (Winkworth et al., 2002; Cook
and Crisp, 2005), a pattern also apparent in Schoeneae. A number of
species of Lepidosperma not included in our analyses also occur in
New Caledonia, their presence there almost certainly being due to re-
cent long-distance dispersal (Barrett, 2012). Dispersal of Schoeneae to
Southern Africa, South America, and New Zealand took place long af-
ter direct contact with Australia had been broken and must, therefore,
have been transoceanic. Long-distance dispersal between the south-
ern continents has now been reported for a number of plant groups,
including from Madagascar to New Caledonia in Acridocarpus (Davis
et al., 2002); from Australia to New Caledonia, New Zealand, and the
Indian Ocean islands in Monimiaceae (Renner et al., 2010); from New
Zealand to Australia and other areas (Winkworth et al., 2002); from
Australasia to southern Africa in Restionaceae (Linder et al., 2003),
Iridaceae (Goldblatt et al., 2002), Ehrharteae (Verboom et al., 2003),
and Proteaceae (Barker et al., 2007); and in the opposite direction in
gnaphaloid Asteraceae, Danthonioideae, and six other taxa (Bergh
and Linder, 2009; Pirie et al., 2012). The schoenoid sedges are, how-
ever, exceptional in terms of the sheer number of transcontinental
dispersal events that have taken place since the mid-Miocene.
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In light of this high dispersal ability, it seems surprising that no
Schoeneae, other than Schoenus nigricans and S. ferrugineus L., have
crossed the tropics into the Northern Hemisphere. Since our model
comparisons indicate a limited role for geographic distance in deter-
mining dispersal rates in Schoeneae (in contrast to the situation in
Danthonioideae; Linder et al., 2013), other factors are required to ex-
plain this pattern. Of likely importance is niche conservatism, a phe-
nomenon whose biogeographic influence has been demonstrated in
a range of plant groups, from both the Northern and Southern Hemi-
spheres (Donoghue, 2008; Crisp et al., 2009). In Schoeneae, limited dis-
persal into the Northern Hemisphere has likely been constrained by
the association of this lineage with the cool-temperate, nutritionally-
deficient conditions that typify the austral zone. Although we have
not tested this idea directly, our analyses do demonstrate significant
phylogenetic conservatism (signal) in habitat moisture and vegeta-
tion openness, with Schoeneae dispersing into areas with the same
habitat in 22 out of 29 cases (Figure 2.7). In some instances, disper-
sal only took place after adaptation to novel habitats (e.g. dispersal
to tropical China and India following adaptation to shaded habitats
in Machaerina, Gahnia), while in others no change was involved (e.g.
dispersal to South America and Southern Africa). Although denser
species sampling, especially of Lepidosperma, might alter our interpre-
tation, these results argue for the general importance of ecological
opportunity in structuring historical dispersal in Schoeneae.

In this context, paleeoenvironmental perturbations operating at a
regional scale have likely been influential in generating opportuni-
ties for dispersal, and in dictating the timing of such dispersal. The
colonization of South America by Oreobolus, for example, coincided
with Andean uplift and the opening up of the oligotrophic paramo
vegetation type (Chacén et al., 2006), these changes likely enhancing
the invasive success of this lineage. Similarly, the establishment of
fynbos vegetation and its associated fire regime on the more nutrient-
deficient substrates of the South African Cape, ca. 20 Ma or earlier
(Bytebier et al., 2011), likely facilitated entry into the region by the
progenitors of the Tetraria s.s. (23.0-37.5Ma) and reticulate-sheathed
Tetraria (10.7-20.7 Ma) clades. Members of both lineages resprout vig-
orously in the wake of fire (Slingsby, 2011) and, like closely related
Schoenus (Shane et al., 2006), probably possess dauciform roots, re-
flecting adaptation to conditions of nutrient deficiency.

2.5 APPENDIX
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Figure 2.8: Gene trees of Schoeneae inferred with MrBayes and RAxML:
ETS.
Scale bar is in substitutions per site. Node support is indicated
by PP values above subtending branches and BP values below.
Clades in Schoeneae are labelled with the informal names used
in the text.
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Figure 2.9: Gene trees (continued): ITS

10 Hypolytrumnemorum ..
10 Mapaniacuspidata . Mapan|0|deae
Chrysitrix capensis
100 Cladiummariscus
100 100 Calyptrocarya
. QL% Digfacnadistans Bisboeckelereae
94 Becquereliacymosa .
10 Lagenocarpusalbo-niger Cryptangieae
100— Carphaglomerafa
10 Carphacapitellatavar. bracteosa Carpha
Carphaalpina
Pseudoschoenusanis .
hynchosporaugosasubsp. brownii
Arthrostylisaphylla Core
Eriophorumvaginatum .
Carexmagellanica Cypermdeae
Ficinia paradoxa o
79 Cyperusrigidifolius

Schoenuguryifolius =~ .

- Tricostularia pauciflora
Tetraria octandra .
_Il\_/l(greloua gahnlufolgmls
etraria microstachys : :
Tetraria involycrata . Tricostularia
Tetraria nigrovaginata
Epischoenugernuus
Tetraria ustulata
Tetraria flexuosa
99- Oreoboluspectinatus
8: Oreoboluskuekenthalii

Capeoboludrevicaulis
Oreobolusobtusangulus
Cycathgclcmjld1e><etmdr:z1j tonod
ostularia pantopodavar. pantopoda
Costulariapsp. P P p Oreobolus
88- Costulariapantopodavar. baronii
Costularialeucocarpa
Costulalrianatalensis
Costularias

— Costulariafragilis
Neesenbeckiaunctoria
Tetraria caplllaris
0 Lgpldospedzmaotrtgpsulm
epidospermdongitudinale :
Machaerinamariscoides Lepldosperma
Machaerinarridifolia
Machaerinajuncea
Evand Machaerinarubiginosa
vandraaristata i
Caustisdioic: Caustis
Mesomelaenaetragona
Mesomelaengseudostygia

athi 1ace.

Cyathochaet: a i
Gahniatr)i/ﬁda Gahnia
Gahniabaniensis .

Schoenugfoliatus

Schoenusigricans

— Tetrariaexilis, .

Tetraria picta .
9 Tetraria sylvatica
9 Tetraga hcompar .

choenupennisetis

Eglsphoenugr30| is Schoenus

pischoenuwillosus

Tetrarja crassa
0.02

Figure 2.10: Gene trees (continued): rbcL
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Figure 2.11: Gene trees (continued): rps16



2.5 APPENDIX 39

Hypolytrumnemorum .
Mapaniacuspidata - . Mapan|0|deae
10 Cladi - Chrysitrix capensis
10! adium g >cus Becquereliacymosa 1 Bisboeckelereae
" Scleriadistans .
Lagenocarpusalbo-niger X K . Cryptang|eae
100~ Irianoptilescapensis
1 Carphacapitellatavar. bracteosa

0 Carpha
Carphaglomerata
(Luc%rphaalpina R I

Rhynchosgoraugosasubs_p brownii
100——————Eriophorumvaginatum

riopho
9 10 1od—é)arex magellanica _ Core
101 100 —Arthrostylisaphylla

Pseudoschoenugani i
00 gy PeudopdigenueaNs,, | Cyperoideae
Cyperusrigidifolius

Schoenusgurvifolius
——Schoenugrandiflorus
Tricostularia pauciflora
100-Tetraria octan r% . .
Morelotia gahniiformis
Costulariaarundinacea . .
Tetraria nigrovaginata Tricostularia
Tetraria microstachys
Tetraria triangularis
Tetraria involucrata
Epischoenugernuus
Tetraria flexuosa
o Caustisdi -Tetraria ustulata
austisdioica i
ﬁ:Evandraarlstata . Caustis
Costularianervosa
Cyathocomehexandra
Capeobolusrevicaulis
QOreobolusobtusangulus
Oreobolusoligocephalus
00-Oreoboluskuekenthalii
Broohonapectnate
Costulariasp. 2 Oreobolus
Costularialaxa .
Costularianatalensis
Costularialeucocarpa
Costulariasp. 3
Costularia pantopodavar. pantopoda
Costulariasp. .
Costulariapantopodavar. baronii
Schoenudbifidus
Schoenugaespititius
Schoenugfoliatus
-Schoenusigens
Schoenusigricans o
choenupennisetis

96

8

Tetraria picta Schoenus

pischoenugracilis
Tetraria bolusii
Tetraria compacta
Tetraria exilis
Tetraria crassa _
Tetraria vanagllls
ata

Gahniabaniensis

GahnlamfldaC thochaet Gahni
athochaetavenacea

0 Cye%{hochaelajiandra_ anhnia
Mesomelaen@seudostygia

me
10 Machaerinairidifolia
10 Machaerinajuncea
Machaerinamariscoides
100 Machaerinarubiginosa

100 Neesenbeckiaunctoria H
Tetraria capillaris . p, Lepidosperma

99

—0.02 Lepidosgerméiliforme

Figure 2.12: Gene trees (continued): trnL



40

100
100

101 - -Chrysitrix capensis
1009 Mapania cuspidata
9 Hypolytrumnemorum

Cladiummariscus

w0 Calyptrocarya
9

AUSTRAL BIOGEOGRAPHY OF SCHOENEAE

100

100

10 Diplaci

arp

Evandraaristata
Caustisdioica,

100-Tetraria octandra .
Morelotia gahniifo

Tetraria
Ptilothrix d
Meso

100 9
95

anniaaspera

100 Tetraria capillaris

Costular#]a nervosa

Scleriadistans

rum_
9 Becquereliacymosa
Lagenocarpuslbo-niger

niger . ’

10 Trianoptilescapensis
10098~ Carphaglomerata
8 Carphacapitellat
Carphaalpin:

avar. bracteosa
a

Rhynchosporaugosasubsp, brownii
0 Eriophorumvaginatum

Carexmagellanica
Arthrostylis aphylla
Pseudoschoenusani:
Ficinia paradoxa =
Cyperusrigidifolius

Schoenugrandiflorus
Schoenugurvifolius
Tricostularia pauciflora

rmis

Costulariaarundinacea
Tetraria nigrovaginata
Tetraria triangularis
Tetraria involucrata
Tetraria microstachys
Epischoenugernuus
Tetranﬁ ustul
lexuos:

lata

Mesomelaengseudostygia

eusta

S
melaenaetragona
Cyathochaetaliandra
yathochaetavenacea

10 Machaerinajuncea
#&%Maﬁhaennarublgmgsa
Machaeri iscoides
100 Macﬁaeﬁnaﬁmgﬁa

—— Neesenbeckigunctoria
Lepidospermdongitudinale
Lepidospermdaterale
Lepidospermaortuosum
Lepidospermdiliforme

Cyathocomehexandra
Capeobolusrevicaulis

0.02

Costulariasp. 3
Costularialaxa . .
Costulariafragilis
Costularia natalensis
Costularialeucocarpa

10 Schoenudbifidus
10 10 Schoenugaespititius
10 Schoenusgigens
——— Schoenugfoliafus
Schoenusiigricans

Schoenugennisetis
. %choenuﬁ'utens
Epischoenuwillosus
Epischoenugracilis
Tetrariapicta

Tetraria sylvatica
Tetraria compar
Tetraria exilis
Tetraria varlagllls

ata

97| Tetraria bolusii
Tetraria crassa
8% Tetraria compacta

Mapanioideae
I Bisboeckelereae
Cryptangieae

Carpha

Core
Cyperoideae

| Caustis

Tricostularia

Gahnia

Lepidosperma

Oreobolus

Schoenus

Figure 2.13: Gene trees (continued): Concatenated cpDNA
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Table 2.2: Sizes, distributions, and habitats of the main clades in Schoeneae
and extent of sampling in this study.

Tax No. No. Pro- Distrib.
Clade . >a of samplpor-  Distribution sam- Refs. Habitat
included .
spp. ed tion pled
SE Aus; NZ;
Pap; Japan; Aus; Zhang Ir.1 swan.lps from low to
Carpha  Carpha 15 0.2 S+E+C Afr; NZ;S etal. high altitudes, .often
) g along stream sides or
Masc; Mad; S Afr (2004) .
rivulets
Am
Zhang
Trianoptiles 3 0.3 SAfr S Afr etal. In wetland
(2004)
In open forest or scrub,
Caustis ~ Caustis 5 0.2 Aus Aus on dry sandy soil, also
at the edge of streams
On wet spots in
Evandra 2 0.5 Aus Aus heathland
Aus; NZ; Aus; In swampy to wet
Gahnia  Gahnia 40 0.1 China; Mal; Mal; places in lowland and
NC; Hawaii NC at high altitude
Cyathochaeta 5 0.4 Aus Aus In marshes
Mesomelaena 5 0.4 Aus Aus In heath formations
Ptilothrix 1 1 Aus Aus In open vegetation
Along rivers and in
Lepido- Lepidosperma 66 o1 Aus; NC; NZ; Aus; woodland, rarely in
sperma piaosp ’ China; Mal NZ mountain heath
vegetation
Aus; Mal; Aus:
China; i’ In wetlands, sometimes
i Mal; R .
Machaerina 1 o1 Pacific; NZ; NC: as floating mats, or in
5 ’ C+S Am; E NZf woodlands, often at
Afr; Mad; ’ higher altitudes
Mad
Masc
Tetraria Aus: Barrett Along creeks and in
capillaris 9 0.1 Aus; NZ NZ ’ et al., inwoodland and heath
complex prep. formations
Neesenbeckia 1 1 SAfr S Afr At stream sides
Aus;
Aus; Mal; . .
Oreobolus Oreobolus 16 03 NZ; S Am; Mal; — Seberg In wet alp].ne and .
.. NZ;S (1988) subantarctic vegetation
Hawaii
Am
Costularia
subgengra S Afr; Mad; S Afr; Raynal In scrubby vegetation
Costularia 15 04 NC Mad; (1972) " rocky ground, rarely
& Chamae- NC 974 in forest fringes
dendron
Capeobolus 1 1 SAfr S Afr Fynbos (heath)
Cyathocoma 3 0.3 SAfr S Afr On mountain slopes
Aus; NZ;
Japan; China; Aus; Bruhl
Schoenus Schoenus 10 o1 Mal; S Afr; NZ; otal. in Often in humid
S.S. > : Eur; W Asia; Mal; S prep" grassland or woodland

SUS; C Am; Afr
S Am

41
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In rather dry, sandy, or
Levyns rocky places on

Tetraria s.s. 30 9 0.3 SAfr S Afr (1947) mountain slopes, more
rarely in marshy places
Levyns In damp to marshy
Epischoenus 7 2 03 SAfr S Afr 3 y) places, often low- to
959" mid-montane
. N In open heath or
Tn‘costu— Tricostularia 5 1 02 Aus; NC; Aus scrubland, on humid
laria Mal .
sandy soils
Morelotia 2 1 0.5 NZ;Hawaii Hawaii On dry open hillsides
Tetraria 1 1 1 Aus Aus Sedgeland, heath,
octandra woodland
Schoenus Bruhl . Often in humid
3 2 07 Aus Aus etal,in
p-p- grassland or woodland
prep.
Reticulate- Slingsb Igclathelraig ’osnandy’ Or
sheathed 46 6 0.1 S+E Afr S Afr ESDyrocy b
. (2011) mountain slopes, more
Tetraria .
rarely in marshy places
Epischoenus 1 1 1 SAf S Afr Seasonal swamps, open
cernuus heath
Costularia NC; Mal; In scrubby vegetation
subgen. . Raynal
Lopho- 9 1 o1 Pap; NC (1974) on rocky ground, rarely
Seychelles in forest fringes
schoenus
UnknownReedia 1 o o Aus — In swamps
Gymmno- Swamps, sedgeland or
schoenus 2 ° o Aus B heathlike vegetation
Ingroup
total 450 69015

Notes: Species from polyphyletic genera were assigned to clades on the basis of
published and preliminary results (listed references and Verboom, 2006). Clade
sizes and distributions were inferred from the World Checklist of Monocotyle-
dons (Govaerts et al., 2011) and the listed references. Habitat descriptions are
from Goetghebeur (1998) and our own observations. Afr, Africa; Am, America;
Aus, Australia; Mad, Madagascar; Mal, Malesia; Masc, Mascarenes; NC, New
Caledonia; NZ, New Zealand; Pap, Papuasia.
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THE EDAPHIC NICHE OF SCHOENEAE ON THE
CAPE PENINSULA

3.1 INTRODUCTION

In The Origin of Species (1859), Darwin describes the speciation of
Geospiza finches on the Galapagos Islands, driven by a divergence in
beak morphology associated with a change in diet among the differ-
ent populations. Hutchinson (1957) later used the source of nutrition
as a key element defining the ecological niche of a species, i.e., the
particular role it plays in the trophic interactions among members of a
community. Plants rely on light from the sun and water and nutrients
from the soil for growth and homeostasis, so soil fertility has been
proposed as a key component of their niche (e.g., Hall et al., 2004).
For example, species endemic to serpentine soils, which are nutrient-
deficient, are thought to have speciated from relatives in more mesic
edaphic habitats through niche divergence and ecological speciation
(Rajakaruna, 2004), similarly to the radiation of Darwin’s finches.

The floristic diversity of the Cape Floristic Region has been at-
tributed in part to the complex geological make-up of the region
(Cowling et al., 2009; Verboom et al., 2015). Four major types of litho-
logical substrate are found on the Cape Peninsula: granite, shale,
sandstone, and Quaternary sand. These rocks have variously been ex-
truded from the mantle or laid down as sediments and have eroded
unevenly across the landscape, exposing a complex mosaic of soil
types derived from the underlying substrates (Compton, 2004). The
tectonic activity that created the Cape Fold Mountains has further
contributed to the heterogeneity of the landscape by shifting and up-
lifting the layers into new positions and generating steep topograph-
ical gradients, which in turn constitute steep clines in temperature,
insolation, rainfall, weathering, and deposition of organic detritus.
This environment is thought to be responsible for high speciation
rates through both physical/topographical isolation of neighbouring
communities and ecological differentiation and specialization, accel-
erating genetic drift and divergence between populations (Verboom
et al., 2015).

The sedges of tribe Schoeneae are most abundant and diverse in
regions of the world with old, continental, highly weathered land-
scapes, such as Australia, Madagascar, New Caledonia, and New
Zealand (Govaerts et al., 2011). They are also common in the Cape
and the Andes, at high elevations in dry and nutrient-poor habitats
(Seberg, 1988; Chacon et al.,, 2006). By contrast, the Isolepis—Ficinia
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clade of tribe Cypereae, which also has a centre of diversity in the
Cape, may more often be found in ravines and near streams, where
water and organic matter accumulate, than on the exposed moun-
tain sides and ridges dominated by schoenoid species in the Tetraria
clades. This suggests that the Schoeneae clade occupies a low-nutrient
niche relative to the rest of Cyperaceae. Further evidence is provided
by Stock and Verboom (2012), who studied foliar nutrient content
across a wide range of angiosperms and in various biomes. They
reported lower N and P concentrations, and higher N:P in Schoe-
neae than in Cypereae and in angiosperms as a whole, although
based on a small sample of Cyperaceae and a tree without branch
length information. In this chapter, I test whether Schoeneae occupy
a more nutrient-poor niche than Cypereae by comparing the soil nu-
trient content of a range of species across different substrates. By
comparing their habitats in an area where both clades are abundant
and diverse, rather than comparing their global edaphic distributions,
the effects of climate (temperature, insolation, water availability) and
biome (light, fire regime, nutrient cycling) are controlled for.

To identify the morphological traits that may adapt the clades to
different substrates, I also examine biomass allocation patterns, leaf
thickness, and foliar nutrient content in species of the two clades and
relate these characters to their substrate nutrient levels: Species grow-
ing on sandy, nutrient-poor soils might be expected to allocate more
biomass to underground organs to promote nutrient uptake and stor-
age, e. g., by exploring greater volumes of soil with long or numerous
roots (Comas and Eissenstat, 2009). Greater investment in culm rather
than leaf tissue might also be expected in low-nutrient conditions,
since culms are structural (i. e., carbon-rich) and allow increasing size
with lower investment in nutrient-rich leaf tissue.

Specific leaf area (SLA) has been proposed as an important adap-
tation to oligotrophic conditions in woody plants (Reich et al., 1999).
Dicots in the fynbos and chaparral typically have low SLA, corre-
sponding to high C:N and C:P ratios (Wright et al., 2002). Meziane
and Shipley (1999) and Knops and Reinhart (2000) also found herba-
ceous plants to have lower SLA in low-nutrient conditions. Schoeneae
are thus predicted to have lower SLA than Cypereae.

The specific hypotheses tested are as follows: Species of the Schoe-
neae clade are expected to occur on sandjier soils with lower nutrient
concentrations than members of Cypereae. In addition, they are ex-
pected to have lower nutrient concentrations in their tissues; more
biomass in their roots for absorbing and storing nutrients; lower SLA;
and a greater proportion of culm tissue relative to leaves.

Schoeneae are also expected to have physiological adaptations such
as cluster roots and P-mobilizing exudates (Shane et al., 2005, 2006)
that make them less dependent on steady access to soil nutrients,
since they may occur in habitats with higher seasonal variation in wa-
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ter availability. This would manifest as a weaker regression of tissue
on soil nutrient content.

3.2 MATERIALS AND METHODS
3.2.1 Fieldwork

To compare the habitats of Schoeneae and Cypereae in an area where
they cooccur in the same climate, plants and soil samples were col-
lected in the field for characterizing the nutrient levels in the soil and
plant tissue and to compare biomass allocation patterns.

3.2.1.1  Selection of species and collection sites

The species that occur on the Cape Peninsula were identified by con-
sulting Cape Plants (Archer, 2000).

To examine the distribution of each species on the Peninsula and
the substrate types it occurs on, the R packages sp, raster, and
maptools (Pebesma and Bivand, 2005) were used to plot the locali-
ties of specimens in the Bolus Herbarium (BOL) and those collected
by A.M. Muasya onto a digital elevation map (DEM) of the Cape
Peninsula obtained from https://wist.echo.nasa.gov/api/. These
collection localities were manually cross-referenced with a lithology
map (MacPhee and de Wit, 2003) to estimate the proportion of spec-
imens occurring on each substrate type (sandstone, sand, shale, or
granite), so that I could attempt to select sites for collection that re-
flected these proportions.

The following sites were selected as they were expected to yield the
greatest number of species of both tribes:

Table 3.1: Number of specimens collected at each site

Collection site Substrate  Schoeneae Cypereae
Die Eike, Goudini shale o] 1
Eensgevonden, Rawsonville shale 3

Rhodes Memorial shale 2

Cape Point sand 5 13
Red Hill, slopes sand 0 1
Red Hill, summit sandstone 3 1
Table Mountain sandstone 6 4
Silvermine sandstone 5 6
Total 24 42
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3.2.1.2  Collection in the field

At each site, for each species found, I collected a specimen, compris-
ing one or several entire individuals. Sufficient material was collected
to provide a complete herbarium voucher for identification (including
a mature inflorescence, if available) in addition to the material to be
analysed, which had to be contain at least one complete tiller and
enough biomass for accurate weighing, as well as enough leaf and
culm biomass for subsequent foliar nutrient analysis. Where possible,
mature individuals were sampled so that measurements would accu-
rately reflect the adult phenotype of individuals that succeeded in
surviving to reproductive age, and so that comparisons among indi-
viduals could sensibly be made. The plant was gently extracted from
the soil together with the soil surrounding the roots. The roots were
only cleared of soil upon reaching the laboratory to avoid damaging
them. In the case of stoloniferous plants, the largest plant was sam-
pled with the entire stolon up to the next tiller. Voucher specimens
are deposited in BOL.

A s0il core of at least 500 g was taken right next to the plant with a
hollow steel cylinder (3cm x 30 cm).

Any sedge species growing within 5m of the sample that had al-
ready been collected elsewhere at the site were not re-collected but
their presence was recorded, as they share a soil sample.

3.2.2 Data collection

3.2.2.1  Soil analysis

The soil texture and nutrient composition of each soil sample were
determined so that the edaphic niches of the two tribes on the Cape
Peninsula could be compared.

Soil samples were dried in an oven at 60 °C and sifted to remove
stones and litter. Mechanical and chemical analyses were performed
by Bemlab (Strand, South Africa) as follows:

sorL TEXTURE Chemical dispersion was done using sodium hex-
ametaphosphate (calgon) and the quantities of the three sand frac-
tions were determined through sieving as described in Non-Affiliated
Soil Analyses Work Committee (1990). Silt and clay quantities were
then determined using sedimentation rates at 20 °C, using an ASTM
E100 (152H-TP) hydrometer.

CHEMICAL COMPOSITION Soil samples were analysed for total
extractable cations, namely K*, Ca**, Mg**, and Na* (extracted at
pH 7 with 0.2M ammonium acetate) by means of the Walkley-Black
method (Non-Affiliated Soil Analyses Work Committee, 1990). The
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extracted solutions were analysed with a Varian ICP-OES optical emis-
sion spectrometer.

Total P was extracted with a 1:1 mixture of 1M nitric acid and hy-
drochloric acid at 80 °C for 30 min. The P concentration in the extract
was then determined with a Varian ICP-OES optical emission spec-
trometer.

Total N content of soil was determined through total combustion
using a Leco Truspec CN N analyser.

3.2.2.2  Phenotype

For testing whether phenotypic traits are associated with particular
edaphic niches and whether these traits differ between tribes, the fol-
lowing measurements were recorded for each specimen: biomass of
each organ, dimensions of plant organs, and tissue nutrient concen-
trations.

BIOMASS AND DIMENSIONS In the laboratory, the soil around the
roots was gently washed off over a fine sieve. The collected samples
were then divided up into root and shoot material. Roots were fur-
ther separated into true roots and rhizomes or stolons, if present. If
culms and leaves were sufficiently distinct in the species, e. g. if they
had different shapes or dimensions or if inflorescences were present,
the shoots were further divided into these two organ types. Inflores-
cences and dead material (including leaf sheaths) were removed at
this stage, so that the measurements would reflect the proportions of
living biomass in the various organs. the plant material was dried in
an oven at 60 °C for 48 h and the dry weight was measured separately
for each organ to 3 decimal places with an Ohaus Pioneer balance
(Ohaus Corp., Pine Brook, New Jersey, USA).

Since the culms of many sedges are green and have stomata, they
must be included when calculating the biomass allocated towards
photosynthetic activity. I have done this by measuring the areas and
masses of the leaves and culms separately and calculating the average
area per unit mass, weighted by the relative biomass of each organ. A
subset of the material for culms and leaves was taken for measuring
shape and size. This subset consisted of at least 10 of each organ from
the sample, or the entire sample if fewer than 10 were available. The
lengths and widths of culms and leaves were measured with a metre
rule to the nearest millimetre, or to the nearest 0.1 mm with a Leica
EZ4 dissecting microscope with eyepiece graticule, depending on size.
Average width along the leaf/culm was approximated as the mean
of the widths at the top and bottom of the organ (i.e., longitudinal
section was approximated to a trapezium). The surface area of leaves
or flat culms was calculated as A = 2 - @ - h (multiplied by 2 since both
surfaces can absorb sunlight). If the organ was not flat (e.g., terete
culm or leaf curled into cylinder), the width was taken as the diameter
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(2r) of the cross-section and surface area was calculated as A = 27tr -
h. The masses of these subsets were recorded as above. Specific leaf
or culm area (SLA/SCA) was then calculated as A/m and the total
specific photosynthetic area (SPhA) of the plant was calculated as the
average of SLA and SCA, weighted by the proportional biomass of
leaves and culms.

FOLIAR NUTRIENT CONCENTRATIONS After measurement, the
dried shoot material was analysed for nutrient content at Bemlab
(Strand, South Africa) as follows: It was milled and ashed at 480 °C,
then shaken up in a 50:50 HCI (32 %) solution for extraction through
filter paper (Campbell and Plank, 1998; Miller, 1998). The cation con-
tent of the extract was measured with a Varian ICP-OES optical emis-
sion spectrometer. Total N content was determined through total com-
bustion in a Leco N-analyser.

3.2.3 Dated molecular phylogeny

Since the traits compared in this study were recorded from multi-
ple species with varying levels of genetic relatedness, the data points
cannot be considered independent and identically distributed (Felsen-
stein, 1985). In order to incorporate this phylogenetic covariance struc-
ture in the statistical analyses, the phylogeny of the sampled species
was estimated from DNA sequences.

3.2.3.1  Voucher material

To ensure that all specimens collected were represented in the phy-
logeny, DNA sequences were obtained from vouchers collected by
AM. Muasya, G.A. Verboom, and A.A. Tshiila, or from the voucher
specimens collected for this study. For taxa in Tetraria and Epischoenus,
in which species delimitation is currently uncertain and specimens
could not confidently be identified, each specimen was considered a
separate OTU for the purpose of phylogeny reconstruction and com-
parative analysis. Sequences were also obtained for Chrysitrix capensis
and a number of Fuirena and Carex species to facilitate alignment
across the various clades and to allow calibration of divergence times
in the phylogeny.

3.2.3.2  Gene regions

In order to benefit from previous molecular work on the Cape sedges
while maximizing the phylogenetic information available, the nuclear
external and internal transcribed spacers (ETS and ITS) and chloro-
plast rps16 intron gene regions were specifically targeted for sequenc-
ing. These regions have been shown to be useful for species-level
phylogeny reconstruction in both Schoeneae and Cypereae (Verboom,
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2006: Schoeneae, Slingsby, 2011: Tetraria, Muasya and de Lange, 2010:
Ficinia, Larridon et al., 2013: Cyperus) and the sequences generated
from those studies were included and expanded upon here.

These gene regions were supplemented with previously published
data from the chloroplast regions ndhF, rbcL, trnL intron, and matK.
These were downloaded from GenBank (http://www.ncbi.nlm.nih.
gov/nuccore/) and from the African Centre for DNA Barcoding project
Cyperaceae of Africa, deposited at BOLD (http://www.boldsystems.
org/), on 2013-02-15. The number of sequences obtained for each gene
region is shown in Table 3.2.

3.2.3.3 PCR and sequencing
For obtaining new sequences, the same procedure was used as de-
scribed in Section 2.2.2.

3.2.3.4 Matrix assembly

Sequences from the above data sets were concatenated into a set
of sequences for each gene. These were aligned into matrices using
MAFFT (Katoh and Toh, 2008). trnL sequences were truncated such
that the trnl—trnF spacer region was excluded.

Table 3.2: Proportion of the 66 taxa with sequence data in the final matrix

Gene 1xa Proportion

ETS 54 0.82
ITS 39 0.59
matK 22 0.33
ndhF 9 0.14
rbcL 45 0.68
rps16 53 0.80
trnL, 33 0.50

The matrices were then realigned with MAFFT, using the E-INS-i
algorithm for the spacer and intronic regions ETS, ITS, rps16, and trnL
and the L-INS-i algorithm for the protein-coding genes matK, ndhF,
and rbcL.

Ambiguously aligned regions were identified and removed with
GBlocks (Talavera and Castresana, 2007), using a minimum block
length of 4 and retaining characters with information in > 50 % of
sequences, for both conserved and flanking positions (i.e., the most
permissive settings).

MrAIC (Nylander, 2004) was used to identify the best-fitting sub-
stitution model for each matrix. The BIC score was used to prevent
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overparametrization (e. g., to identify matrices in which the rates of
the various transition and transversion types were different enough to
justify the additional parameters of a GTR model, relative to the HKY
model). Rate heterogeneity was detected in all matrices (i. e., models
with I' rate distribution had better BIC scores than those where rate
was assumed to be equal at all positions in the matrix).

The optimized topologies of the gene trees under the best substitu-
tion model of each matrix were examined visually for incongruence.
They were also used to construct a hybridization network in Dendro-
scope v. 3.2.10 (Huson et al., 2007). These trees were produced by
PhyML (Guindon et al., 2010) via MrAIC during model optimization
and contain node support values calculated using the approximation
of the Shimodaira-Hasegawa test (SH-like support), a replacement
for the overly conservative bootstrap support metric (Anisimova et al.,
2011). The only disagreements were for nodes with low SH-like sup-
port and subtended by short branches within Ficinia and the Eutetraria
clade, indicating insufficient information in the data to infer branch-
ing order, rather than gene tree conflict. The seven matrices were,
therefore, joined by species/accession and the concatenated matrix
was used for phylogeny reconstruction.

3.2.3.5 Phylogeny reconstruction

The maximume-likelihood tree was used as the starting tree for the
BEAST analysis. It was inferred with RAXML on the CIPRES Science
Gateway (Stamatakis et al., 2008; Miller et al., 2010). The concatenated
matrix was partitioned by gene region and a GTR+CAT,; substitution
matrix was optimized separately on each partition. The GTR model
was used for all partitions since HKY was not available in RAXML
and CAT,; was used as a discrete approximation of the I' distribution
to increase the efficiency of estimating rate variation (Stamatakis et al.,
2008).

BEAST (Drummond and Rambaut, 2007) was used to infer an ul-
trametric tree for the Cape Peninsula sedges by assigning date ranges
to internal nodes. The Bayesian relaxed-clock method was chosen be-
cause it accounts for uncertainty in the inferred topology and rate
matrices and incorporates branch-level rate heterogeneity by inde-
pendently sampling from a log-normal distribution of rates for each
branch (Drummond et al., 2006).

To calibrate the node age estimates, the same prior on the root
node was used as described in Section 2.2.6, but the calibration on the
crown of Hypolytreae was omitted, since that clade was not included
in the current data set because gene sampling was too sparse.

The GTR+I substitution model was used for all partitions except
rbcL and trnL, in which HKY+I" had a better BIC score. The same set-
tings were used for the substitution and tree priors as in Section 2.2.6,
with the exception of the relative death rate, for which a normal dis-
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tribution with = 0.5, ¢ = 0.25, truncated to the range [0,1] was
used (giving a 95 % confidence interval of [0.08,0.92]).

Each MCMC chain was run for 5 x 107 generations, saving every
5000th generation (yielding 10* samples per run). The analysis was
run on the CIPRES cluster and it was repeated four times to ensure
that the chains were not trapped in local optima. Examination of the
traces for each parameter estimate indicated that the MCMC runs had
converged and that the parameter estimates were consistent across
the four runs. The first 50 % of samples were discarded as burn-in
and TreeAnnotator (Drummond and Rambaut, 2007) was used to de-
termine the tree from the post-burn-in samples with the highest clade
credibility and to annotate nodes with PP > 0.95 with the median
node heights and other parameter estimate summaries.

3.2.4 Statistical analysis

Three sets of tests were performed on the data collected: (1) tests
of niche and trait conservatism; (2) tests of differences in niche and
trait values between the clades; and (3) tests of bivariate relationships
between trait and niche values within the clades.

3.2.4.1 Trait conservatism within clades

Conservatism of both morphological traits and habitat characteris-
tics was assessed using Blomberg’s (2003) test for phylogenetic signal.
The K statistic is calculated from the data, where values of K > 0 im-
ply that close relatives are more similar than expected (i. e., the trait
is conserved). Statistical significance was estimated by permuting the
tip values across the phylogeny 10000 times to create a distribution
of K values under the null hypothesis of no phylogenetic structure,
to which the observed K was compared.

3.2.4.2 Trait differences between clades

To account for non-independence of data points due to phylogenetic
relatedness in the statistical tests (Felsenstein, 1985), the phylogenetic
covariance structure must be incorporated into the error model. In-
stead of assuming that data are independent and identically normally
distributed, they are assumed to have been generated by a Brownian-
motion (BM) process, whereby the mean and variance of a trait at
any given node of the phylogeny depend on the trait of its imme-
diate ancestor and on the length of the subtending branch (Ackerly
et al., 2006).

For testing for significant differences between the two tribes along
single axes of variation, the difference in clade averages was com-
pared to a null distribution of clade differences, where the maximum-
likelihood ancestral character estimate (ACE) was used as the clade
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average. For testing bivariate relationships in comparative biology, a
null distribution is often generated by shuffling the tip values while
keeping the tree constant. This would be inappropriate in this situa-
tion, since the R permutations would each constitute a single replicate
from R unique models (since the mean and variance would change
when tip values are shuffled), rather than being R replicates drawn
from a single generating model. Instead, the null distribution was
generated by simulating 9999 BM histories on the phylogeny, using
the ACE and variance of the root node estimated from the observed
data. (For proportion of sand in the soil sample, the BM model was
constrained within the bounds 0 % and 100 %.) This is analogous to a
standard test by simulation where the null is generated by drawing
random variates from a distribution with the parameters as estimated
from the data and assuming the null hypothesis.

To estimate the power of this test, I simulated 100 histories of trait
evolution from different starting states at the root of each of the two
clades, for a range of clade differences between 0 and 20 and ¢ = 1.
In each simulation, the significance of the clade difference (P) was
calculated by comparing it to a null distribution of 200 BM histories
with y = 0, ¢ = 1. The power was then calculated as the proportion
of histories in which the true clade difference could be detected as
significant (P < «) for false-negative rates « = {0.01,0.05,0.10}.

3.2.4.3 Bivariate relationships within clades

To test for bivariate relationships between habitat and trait values,
regression was done on the phylogenetically-independent contrasts
(PICs; Garland et al., 1992 to account for phylogenetic covariance
in the tip values. Contrasts were scaled to branch length and a lin-
ear model passing through the origin was fit to the PICs, separately
within each tribe. The statistical significance of the effect size was
calculated parametrically from the ¢ distribution.

The statistical analyses were conducted in R using the packages ape
v. 3.3 (Paradis et al., 2004), phyloch v. 1.5-5 (Heibl, 2008), and phytools
v. 0.4-60 (Revell, 2011), and the analysis scripts are publicly available
on GitHub at https://github.com/javiljoen/msc-data-analysis.
When conducting a large number of statistical tests, a multiple-
testing correction is often applied to the resulting P values so that the
overall Type I error rate is not underestimated, e.g., (Benjamini and
Hochberg, 1995). The Pearson approach to hypothesis testing involves
comparing the observed value of P to the significance threshold «,
which is predetermined such that the long-term false positive error
rate remains below an appropriate level (Lew, 2012). As the present
study is a single study not part of a long-term research programme,
there is no way choosing an appropriate value for the arbitrary sig-
nificance level «. Instead, I adopt the Fisher interpretation of P as the
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strength of the evidence in favour of the null hypothesis (Lew, 2012),
and I assess the significance of the statistical results in light of both
the multiple tests conducted and the small sample size, which entails
low power (high false negative rate).

3.3 RESULTS

3.3.1  Phylogeny

The same clades of Schoeneae were recovered as in Chapter 2, though
some nodes within Tetraria and Ficinia had low PP support (Fig-
ure 3.11). However, these nodes were subtended by short branches,
and since the statistical methods employed do take branch length
into account, the trait evolution histories inferred would be robust to
incorrect branching order.

3.3.2 Trait conservatism within clades

The traits that were found to show significant phylogenetic signal
were Soil [N] in Schoeneae and specific photosynthetic area (SPhA)
in Cypereae (Table 3.3). There was also weak evidence for conser-
vatism in Soil [P] in Schoeneae. The other variables had K values not
significantly greater than 0. [N] and SPhA were also conserved across
the tree as a whole, though with lower support.

Table 3.3: Tests of trait conservatism in the two clades using Blomberg’s K.

Schoeneae Cypereae Whole tree
K P K P K P
Soil N 0.25 0.016 0.17 0580 0.09 0.034
Soil P 0.09 0.059 0.15 0.670 0.06 0.225
Soil Na 0.04 0.285 0.23 0298 007 0.210
Sand % 0.04 0.391 0.12 0.922 0.04 0.428
Soil N:P 0.04 0.324 0.11 0.912 0.04 0.405

Root per Plant 0.01 0.683 o0.16 0509 0.02 0.732
Culm per Shoot 0.03 0278 o031 0357 004 0.287
SPhA 0.01 0.818 0.37 0.008 0.07 0.055

3.3.3 Differences in soil fertility between clades

The BM simulations of habitat change in the two clades did not sup-
port the hypothesis that Schoeneae occur on poorer, sandier soils than
Cypereae. The observed average P level in Schoeneae was lower than
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in Cypereae, while [N] and proportion of sand were slightly higher
(Figure 3.1). However, these differences were not statistically signifi-
cant (P between 0.30 and 0.52; Table 3.5).
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Figure 3.1: Evolution of soil traits reconstructed by maximum likelihood.



3.3 RESULTS 67

Carpha glomerata
Tetraria Compar
Tetraria sylvatica
Epischoenus sp JV104
Ej  sp JV57

Tetraria i Jvaa
Tetraria cuspidata V43

Tetraria cus
il Tetraria exilis JV89
Tetraria exilis JV72
Tetraria cuspidata JV56
Tetraria fimbriolata
Tetraria bromoides
Tetraria microstachys
Tetraria eximia
Tetraria triangularis
Tetraria fasciata
Tetraria P|EIOStICha

ia flexuos:

Schoeneae

austulata
eobolus brevicaulis _|
nia oligantha

ia lateralis

ia dunensis

ia trichodes,

ia ramosissima
ia bulbosa

ia polystachya
ia micrantha

ia fastigiata

ia capillifolia

ia brevifolia

ia ind

L
33
8

ia anceps
ia pallens

ia secunda

ia deusta

ia nigrescens
ia nodosa

ia acuminata
ia paradoxa
solepis striata .
solepis ludwigii
solepis levynsiana
solepis sororia
solepis prolifera

r solepis sepulcralis
solepis hystrix

=

S53553355555535553332553,

Cypereae

Scirpoides holoschoenus
Cyperus congestus
Cyperus thunbergii
Cyperus sphaerospermus
Cyperus denudatus _

11 P 589

@ P

Carpha

Tetraria compar

Tetraria sylvatica
Epischoenus sp JV104
E|  sp IV57

s idata JV94
Tetraria i Jv43
L] Tetraria cus
n B Tetraria exilis JV89
Tetraria exilis V72
Tetraria cuspidata JV56

Tef
Tetraria bromoides
Tetraria microstachys
Tetraria eximia
Tetraria triangularis
Tetraria fasciata
Tetraria pleiosticha
Tetraria flexuosa
Tetraria ustulata =~
—————— 1 Capeobolus brevicaulis _]
ia oligantha
a lateralis.
ia dunensis
ia trichodes
ia ramosissima
ia bulbosa
ia polystachya
ia micrantha
fastqﬁ ta
ia capillifolia
ia brevifolia
indica
ia capitella

Schoeneae

ia deusta
ia nigrescens
nodosa
2 acuminata
ia paradoxa
solepis striata
solepis ludwigii
solepis levynsiana
solepis sororia
solepis prolifera
solepis sepulcralis
— 1 Isolepis hystrix

535355555335553555333353,
S SODDDD

Cypereae

0.01 Na 1

Cyperus sphaerospermus
— 1 Cyperus denudatus _

(b) Na

Figure 3.2: Evolution of soil traits (cont.)



68

NICHE DIFFERENTIATION ON THE CAPE PENINSULA

Carpha glomerata
Tetraria Compar
Tetraria sylvatica
Epischoenus sp JV104
E| b V57

choenus s

arl Jvaa
Tetraria cuspidata V43
Tetraria ¢ ata
Tetraria exilis JV89

aria exilis JV72.
Tetraria cuspidata JV56
Tetraria fimbriolata
Tetraria bromoides
Tetraria microstachys
Tetraria eximia
Tetraria triangularis
Tetraria fasciata
Tetraria pleiosticha
Tetraria flexuosa

ari

]

brevicaulis _|

(a) N:P

igantha

ol
lateralis
dunensis
a trichodes

a
a
a

a ramosissima
a bulbosa

a polystachya
a micrantha

a fastigiata

a nigrescens
a acuminata

solepis striata .
solepis ludwigii
solepis levynsiana
solepis sororia
solepis prolifera
solepis sepulcralis
solepis hystrix

Carpha glomerata
Tetraria compar
'éet,rarla sylvatica

=

|

|
- ‘M}Mﬁm

Cypereae

Tetraria microstachys
Tetraria eximia
Tetraria triangularis
Tetraria fasciata
Tetraria pleiosticha
Tetraria flexuosa

ulata
us brevicaulis _|
a oligantha

a lateralis

a dunensis

a trichodes

a ramosissima

ia bulbosa

a polystachya

a micrantha

a fast[ﬁ_lata

a capillifolia

a brevifolia

a deusta
a nigrescens
nodosa

a acuminata

Ficinia p:

solepis striata
solepis ludwigii
solepis levynsiana
solepis sororia
solepis prolifera
solepis sepulcralis
solepis hystrix

Scirpoides holoschoenus
Cyperus congestus

Cyperus thunbergii
66 Sand 96 cygerus sphaerogspermus
1 == Cyperus

(b) Sand

Figure 3.3: Evolution of soil traits (cont.)

Schoeneae

Cypereae

Schoeneae



3.3 RESULTS

Table 3.5: Tests of trait differences between the two clades.

Schoeneae Cypereae

P @ A T
Soil N 0.242 0.041 0.118 0.055 0.124  0.520
Soil P 65587 31.639 116.092  31.639 -50.505  0.301
Soil Na 0.168 0.075 0.167 0.096 0.001  0.503
Sand % 89.605 19.857 84.827  24.576 4.778  0.497
Root per Plant 0.418 0.357 0.373 0.145 0.045 0.507
Culm per Shoot 0.341 0.299 0.708 0.189 -0.366  0.524
SPhA 8.706 0.031 10.672 0.031 -1.965  0.010

3.3.4 Differences in biomass allocation patterns between clades

There was no evidence for the Schoeneae samples having a greater
proportion of their biomass in underground structures; nor did they
show a greater allocation to culms rather than leaves (Table 3.5, Fig-
ure 3.4). They did, however, have a significantly lower average specific
photosynthetic area than Cypereae (8.7 mm? mg~! vs. 10.7 mm? mg!).
This appears to be mainly due to the high SPhA of the Isolepis samples

(Figure 3.5b).
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Figure 3.6: Power of test for clade differences at three levels of «.

3.3.5 Power of clade difference test

The estimated power of the above test to detect true differences be-
tween clades is shown in Figure 3.6. Even with a high false-positive
rate of &« = 0.10, to detect a true difference at a rate of at least 25 %, the
difference between clades must be greater than about 8 ¢. Almost all
the variables listed in Table 3.5 showed a difference of < 3¢, which
has a power of less than 0.05 (and less still at stricter levels of ).
The exception is SPhA, for which the Schoeneae mean was about 60 ¢
lower. This was also the only variable in which a significant difference
was identified.

3.3.6 Correlation of foliar and soil nutrients

No relationship was observed between the nutrient concentration of
the soils and of the leaves for N (t = 0.50, df= 46, P = 0.31) and
Na* (t = 0.42, df= 53, P = 0.33; Figure 3.7), whether the clades were
considered separately or across the tree. There was a weak positive
association in P levels (t = 1.95, df= 53, P = 0.056) when Schoeneae
and Cypereae samples were considered together. Considered sepa-
rately, however, Schoeneae showed no relationship (t = 0.26, df= 18,
P = 0.80) and Cypereae showed a very weak positive relationship
(t = 1.62, df= 32, P = 0.11). The plots in Figure 3.7 show that the
contrasts in foliar nutrient levels are consistently low in Schoeneae,
even when the concentrations in the soil vary considerably.
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Figure 3.7: Phylogenetic regression of leaf nutrient content on soil nutrient
content (red: Schoeneae; grey: Cypereae).

3.3.7 Relationships between soil nutrient levels and biomass allocation

Cypereae showed a weak positive association in the regression of
SPhA on soil N concentration (¢t = 2.03, df= 32, P = 0.051) and
no relationship for P (t = 1.12, df= 32, P = 0.27) nor Na* (t = —0.95,
df= 32, P = 0.35). Schoeneae samples had lower SPhA on soils with
high N (t = —3.40, df= 18, P = 0.003) and high Na* (t = —2.37,
df= 18, P = 0.029) but P level had no effect (t = 0.04, df= 18,
P = 0.97; Figure 3.8). The soil N:P ratio had a strong negative ef-
fect on SPhA in Schoeneae (t = —3.27, df= 18, P = 0.004) but not in
Cypereae (t = 0.14, df= 32, P = 0.89).

Soil nutrient level had no negative effect on proportional biomass
in culms (N: t = 0.62, df= 30, P = 0.27; P: t = —0.15, df= 30, P =
0.44; Na*: t = —0.06, df= 30, P = 0.48; Figure 3.9). Relationships
were similarly insignificant within clades. There was, however, a weak
positive effect of N:P on culm proportion (t = 1.19, df= 30, P = 0.12),
though this was not detected within clades.
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Figure 3.8: Effect of soil nutrient content on specific photosynthetic area.

Proportion of biomass in roots was not negatively associated with
soil concentrations of N (f = 0.31, df= 53, P = 0.38) nor P (t = —0.63,
df= 53, P = 0.26). However, Schoeneae samples on soils with high
Na* had much less root material than those on low-sodium soils (f =
—5.74, df= 18, P < 0.001), though this relationship was driven by
only two data points (Figure 3.10). Plants on soils with high N:P did
not have more biomass in their roots (t = —1.14, df= 53, P = 0.13).
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Figure 3.10: Effect of soil nutrient content on proportion of biomass in roots.
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3.4 DISCUSSION

Preliminary multivariate analysis suggested that Cape Schoeneae oc-
cupy a relatively low-nutrient niche, whereas Cypereae occur in a
wider range of nutrient regimes in the Cape, which largely overlaps
that of Schoeneae. This pattern is consistent with the global distri-
bution of the sedge tribes, with Schoeneae being most abundant and
speciose in ancient, oligotrophic, continental landscapes, while Cyper-
eae are cosmopolitan and are spread across a wide range of climatic
and geological habitats (Govaerts et al., 2011). Indeed, both [N] and
[P] content of edaphic habitats were found to show conservatism in
Schoeneae. The average [P] level was also lower in Schoeneae than
in Cypereae and N:P was higher, but neither result was supported
as statistically significant, nor was the greater proportion of sand in
Schoeneae soils. The simulation of the discriminatory power of the
statistical test on the species set used in this study indicated that the
sample size was too small to detect true differences of the observed
magnitude. In the comparisons of traits between clades, the effect
sizes (the differences between clade averages) were all less than 50,
which was estimated to correspond to a maximum power of 0.05 at
a = 0.10 (and lower at & = 0.05; Figure 3.6). In other words, any given
true effect has a probability of less than 5% of being detected, given
the sample size and phylogeny used in this study. It is thus not pos-
sible to determine whether the observed differences were statistically
insignificant because of a lack of niche difference between the clades
or whether it is simply a consequence of insufficient sampling A fur-
ther limitation imposed by the small sample size is that it constrains
the complexity of the statistical models that can be used: the sim-
ple models used here, i.e., nonparametric phylogenetic forms of the
standard f test and single-predictor linear regression, have high bias.
While more complex models incorporating, e. g., geospatial informa-
tion (autocorrelation between sampling localities) and non-Brownian
patterns of trait evolution (directed, early-burst, Ornstein-Uhlenbeck)
would be less biased by being more flexible and realistic, effect size
estimates would necessarily have higher variance (the bias—variance
tradeoff; James et al., 2013) so their power would be even lower.

As expected from the lack of a significant difference in the N, P, and
Na™ concentrations, the nutrient levels in leaves and culms were not
found to be well correlated with soil nutrient concentrations, though
there was a weak correlation for P in Cypereae. Shane et al. (2006)
demonstrated that root features found in some Schoeneae species,
such as dauciform roots and root exudates, enhance P uptake in olig-
otrophic conditions. Such adaptations might be responsible for foliar
nutrient content being more decoupled from concentration in the soil
by allowing them to accumulate nutrients in their tissues over time.
Schoenoid species also tend to be larger, suggesting that they may be
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longer-lived on average, giving them more time over which to acquire
and accumulate nutrients, while Ficinia species are frequently most
abundant in the nutrient flush after fires (Van Wilgen and Forsyth,
1992, AM Muasya pers. comm., pers. obs.), emphasizing their reliance
for growth on nutrients being readily available in the environment.

The regression of the biomass of the various organs on the corre-
sponding soil nutrient level showed no effect of soil [N], [P], or N:P
on the underground fraction of the total biomass. Schoeneae samples
occurring on high-sodium soils did have a lower proportion of root
biomass. It is possible that high [Na*] inhibits root production, since
it is toxic at even moderate concentrations (Kingsbury and Epstein,
1986). There was also no effect of soil N, P, or Na* concentration
detected on the ratio of leaf to culm biomass. The Cypereae sam-
ples showed higher specific photosynthetic area (SPhA) with increas-
ing [N], as is commonly observed (Wright et al., 2002; Meziane and
Shipley, 1999; Knops and Reinhart, 2000), but the Schoeneae samples
showed the opposite trend: low SPhA on high [N] and [Na*] soils. No
effect of [P] was detected in either group, so the strong effect of N:P
on SPhA in Schoeneae is a reflection of the [N] effect. This statistical
relationship is driven by two points with high leverage and is not
supported by the rest of the data. The lack of consistent evidence for
an edaphic effect on these phenotypic traits might indicate that these
traits are not strongly tied to soil nutrient availability in Cyperaceae,
perhaps due to some mechanism of nutrient accumulation in plant
tissues, decoupling growth and development from soil fertility. How-
ever, two statistical issues indicate that caution is warranted to avoid
overinterpreting the results: Forty-five hypotheses were tested in this
study and the reported P values have not been corrected for multi-
ple testing, so the false positive rate has been underestimated (Ben-
jamini and Hochberg, 1995). In addition, the statistically significant
results observed may not be robust because of the small sample size,
since the observed relationships are driven by a few data points with
high leverage. In other words, whether these points were sampled or
not has a disproportionate effect on the strength of the regression. A
larger sample size would allow more stable and accurate estimation
of the relationships between variables (James et al., 2013).

To infer patterns of trait evolution in these clades more accurately,
the fit of different models should be compared (similarly to the evalu-
ation of dispersal models in Chapter 2). This is desirable because the
different subclades of both Schoeneae and Cypereae are likely to have
different ecological niches. Chapter 2 showed that Epischoenus may oc-
cur in wetter localities than the two Tetraria clades. Within Cypereae,
Cyperus species are predominantly tropical, while Ficinia occupies
dry, exposed habitats, and Isolepis is mainly annual and dependent
on open water. If these moisture niches are associated with different
soil types of soil fertility levels, comparison between tribes would
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not be the appropriate scale of analysis. However, while these more
complex models would more accurately represent patterns within the
tribes, fitting them would require a larger sample size in order to ob-
tain stable parameter estimates and to have sufficient discriminatory
power to detect differences between clades. I, therefore, recommend
that future work on this question emphasize deeper sampling and
finer-scale analysis within each of the main clades.
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Figure 3.11: Dated phylogeny of the taxa studied
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CONCLUSION

The six principal schoenoid lineages were differentiated during a dra-
matic radiation event taking place within Australia ca. 50Ma, the
rapid tempo of lineage divergence at this time accounting for a lack of
phylogenetic resolution at the base of Schoeneae. From this starting
point, members of the lineage dispersed freely, colonizing most land-
masses in the Southern Hemisphere, sometimes repeatedly. A min-
imum of 29 transoceanic dispersal events since the Oligocene were
inferred. Since dispersal rates are not related to geographic distance,
factors other than geography are required to explain the australly bi-
ased distribution of this group. Most transoceanic dispersal in Schoe-
neae has proceeded without change in the habitat variables examined,
suggesting a role for niche conservatism in determining the distribu-
tion of the clade.

Schoeneae are most diverse and abundant in oligotrophic regions
of the world, in contrast to the other tribes of Cyperaceae. Comparing
the edaphic habitats of members of Schoeneae and Cypereae in the
Cape supported the hypothesis of trait conservatism in soil N and P
levels. A weak correlation was detected between the levels of P in soils
and tissues of schoenoid plants, suggesting that Stock and Verboom’s
(2012) finding of relatively low foliar P in Schoeneae may be a direct
reflection of their edaphic habitat. However, statistical evidence for
niche differentiation between Schoeneae and Cypereae in the Cape
was lacking, and the phenotypic traits examined were generally not
found to respond to soil fertility. It remains unclear whether this is
because photosynthetic area and preferential biomass allocation to
roots or to culms are unaffected by N and P levels in the soil, or
whether such effects were not detectable on account of insufficient
sampling.

The analysis of categorically coded habitat characters in Chapter 2
suggested that climatic niches might also be conserved in Schoeneae.
Bioclim climate data for GBIF specimens from across the globe (Fig-
ure 4.1) shows that Schoeneae occupy a climatic niche distinct to
that of Cypereae. More thorough sampling within clades and regions
would allow the elucidation of both edaphic and climatic correlates
of schoenoid dispersal to be undertaken, as has recently been done
for the North American caricoid sedges (Spalink et al., 2016).
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Figure 4.1: Linear discriminant function summarizing Bioclim data for spec-
imens in GBIFE.
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